
School of Computer Science
The University of Auckland

New Zealand

Adaptive Self-Sufficient Itemset
Miner for Transactional Data

Streams
Feiyang Tang

June 2019

Supervisors:

David T.J. Huang

Yun Sing Koh

A dissertation submitted in partial fulfillment of the requirements of

Bachelors Degree in Science (Honours)



2



Abstract

Most studies on pattern mining consider itemsets that have a high frequency of occurrence

as useful, often determined by the support of the itemsets. However, current research has

shown that we need to move beyond a pure “support-confidence” framework for pattern

mining. Recently, there is an interest on finding statistically significant patterns and one

of the most popular type of patterns is self-sufficient itemsets. One limitation is that these

works do not consider concept drifts and cannot be used in a data stream. Learning in the

online environment requires us to develop efficient and effective mechanisms to address

the online characteristics of non-static data and non-stationary data distributions. In

our research we will concentrate on detecting self-sufficient itemsets from data streams.

The usefulness of these itemsets are not solely determined by the frequency of either

their subsets or their supersets. We present a comprehensive framework for mining self-

sufficient itemsets from data streams along with a drift detector. This supports mining

self-sufficient itemsets in an online environment and provides the ability to adapt to

changes in the stream.
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1
Introduction

People recognise concepts, rules, restraints, and information as ‘knowledge’. Data is often

treated as the basis of constructing knowledge. Traditionally, data mining and knowledge

discovery was performed manually. As time passed, the amount of data in many systems

grew to larger than terabyte size, and could no longer be maintained manually, which

brought the idea of machine learning and data mining, also formed a part of artificial

intelligence.

The process of knowledge discovery has been widely discussed since late 20th century

and focused on acquiring knowledge that is accurate and precise. The latter focus em-

phasises the execution efficiency of the algorithms. This may be achieved by adopting a

more efficient data structure or having a faster processing mechanism.

1.1 Big data and Data Mining

Big data consists of large datasets that often exceed the collection, utilisation, manage-

ment, and processing capabilities of humans within acceptable times. The size of big data

often may vary. As in 2012, the size of a single dataset ranges from a few terabytes (TB)

to tens of petabytes (PB) [46].

Doug Laney [26], an analyst at META Group (now Gartner) in 2001, articulated the

challenges and opportunities for data growth have three directions: volume, variety, and

velocity, collectively referred to as “3V” or “3Vs” [26]. Gartner and most of the companies

1



2 Introduction

in the big data industry today continue to use 3V to describe big data. Gartner revised

the definition of big data in 2012 as: “Big data is a large, high-speed and changeable

information asset that requires new ways of processing to enable better decision making,

insight and optimisation.” In addition, there is the fourth V has been recently defined

outside the 3V: veracity, to make an up-to-date definition: “4V”. The “4V” definition is

explained as following:

• Volume. Organisations collect data from a variety of sources, including business

transactions, social media and information from sensor or machine-to-machine data.

In the past, storing it would have been a problem – but new technologies (such as

Hadoop) have eased the burden.

• Velocity. Data streams in at an unprecedented speed and must be dealt with in

a timely manner. RFID tags, sensors and smart metering are driving the need to

deal with torrents of data in near-real time.

• Variety. Data comes in all types of formats – from structured, numeric data in

traditional databases to unstructured text documents, email, video, audio, stock

ticker data and financial transactions.

• Veracity. Big data veracity refers to the biases, noise and abnormalities, ambigui-

ties, latency in data.

Big data must be statistically collected, compared, and parsed to a computer to pro-

duce objective results. The United States started to emphasise their research on big data

in 2012. In the same year, President Obama invested 200 million dollars in the devel-

opment of big data analytical projects, and emphasised that big data will be the future

petroleum.

As we all know, big data is not simply a fact of big data, but the most important is

how to analyse big data. We can only get intelligent, in-depth and valuable information

through data analysis. There are several methodologies that are common in big data

analysis:

1. Visualisation. As the target audience of big data analysis report may not be

statistics or computer science professionals, it is very important to ensure that

the information provided are relevantly direct and understandable. This brings

visualisation in the first priority, because visualisation can intuitively present big

data features and can be understand is as simple and straightforward as reading a

picture.
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2. Data mining algorithms. The theoretical core of big data analysis is data mining

algorithms. Various data mining algorithms based on different data types and for-

mats can present the characteristics of the data more scientifically. The algorithms

can usually achieve good efficiency which can significantly improve the cost of big

data analysis.

3. Prediction. One of the most important goals of big data analysis is to make

predictions. After the characteristics are extracted from big data, data scientist can

build a model based on these characteristics and predict the future trends.

4. Big data management. Big data analysis is inseparable from keeping the integrity

and quality of input data. High-quality data and an effective data management will

be beneficial in both academic research and commercial development, to ensure the

authenticity and value of the results.

Data mining, also as known as Knowledge Discover in Database (KDD), is the process

of extracting information that is hidden from the prior art, but is potentially useful, from

a large number of incomplete, noisy, fuzzy, and random practical data. This definition

includes several layers of meaning: the data source must be real, large, and noisy; the

knowledge that is of interest to users; the knowledge found is acceptable, understandable,

and usable.

In the next section, we are going to look at data stream mining by defining data

stream first then discuss some unique characteristic of data stream and how to make

proper analysis on it.

1.2 Data Stream Mining

Data stream is ubiquitous in our lives. The telephone communication records, social

media use, retail sales transactions and even the real-time stock exchange information are

all data streams.

What is a data stream? We can understand that the data in these situations mentioned

above have a common feature, that is, infinity. In addition to endless incoming data,

think about the retail transactions and stock exchange records, they both have a very

fast updating speed, which makes the timing critical for data stream analysis. The data

first seen in the data stream could be expired after new data arrives.

To understand and analyse the characteristics of the data stream, we naturally think,

can we apply the traditional data mining method to data stream? As several mature

data mining methods have developed during the last decades, data source is stored in flat

files, relational databases, transactional databases, etc. These methods (such as OLAP)
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are built on top of data that has been saved statically and not updated frequently, for

example, a data warehouse. Furthermore, some of our methods requires more than one

access to the data. However, it is almost impossible to store data stream because of

its infinite size and consistent updates. Aim to process a special type of data like data

stream, it is better to scan the data once or a constant number of times but not the entire

data stream to reduce the memory use.

1.2.1 Association Rule Mining

For the successful existence of any business, discovering underlying patterns in data is

considered essential. As a result, several pattern mining algorithms were developed to

discover hidden data and make assumptions, which formed a part of artificial intelligence.

These algorithms are able to find either the features which occur together or those are

somehow correlated.

What does the value of one feature tell us about the value of another feature? For

example, people who buy nappies are likely to buy baby powder. Or we can rephrase the

statement by saying: if (people buy nappies), then (they buy baby powder). Note the

if, then rule. This does not necessarily mean that if people buy baby powder, they buy

nappies. In General, we can say that if condition A tends to B it does not necessarily mean

that B tends to A. The relationship between nappies and baby powder can be treated as

an association rule, that is the interesting patterns we aim to mine from data streams.

Section 2 will have more discussion on the techniques which have been widely re-

searched and used on data stream mining especially on association rule mining. To better

mining significant patterns out from data stream, we will address out motivation in the

next section.

1.3 Motivation

One of the most researched fields for data stream is mining significant patterns out of

data stream. Current research in data stream pattern mining relies on using minimum or

maximum support thresholds to derive the association rules [18], which comes with many

drawbacks such as not considering the statistical significance of patterns. Thus, these

work may find many frequent patterns that are spurious - contains values that appear

together by chance rather than having a strong correlation. To solve this drawback, Webb

et al. [44, 45] proposed and defined self-sufficient itemsets to produce more ‘interesting’

rules. Those are itemsets having a frequency that cannot be explained solely by the

frequency of their subsets or supersets. It has been shown that itemsets derived using

minimum support that does not also satisfy the definition of self-sufficient itemsets are
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unlikely to produce interesting rules. Given the infinite growth of data streams, we require

the association rule mining algorithms to be workable on a data stream.

While a large number of papers discussed mining interesting association rules from

data streams, the non-stationary distributions problem has not been as widely dealt with

in the pattern mining research domain. Changes in the underlying distribution may lead

to changes in the relevant pool of itemsets over time, which will reduce the correctness of

interesting rules mined. This is known as the concept drift problem. In this section, we

look at official retail data from Stats NZ [39] which helps illustrate concept drift problems

in data stream mining.

Figure 1.1 and 1.2 below are retail sales data in two different quarters: December 2017

to March 2018 and March 2018 to June 2018. It is very interesting to see that people

buy significantly different goods in these two quarters. For instance, we look at sales of

grocery, liquor and tobacco product from Quarter 1 2018 to Quarter 2 2018. The figures

show us that sales went down in the first quarter of 2018 but went rapidly up during the

second quarter. This kind of distribution changes bring the challenge of using a static

model to mine patterns for a entire data stream. Obviously, changes need to be separately

considered to ensure the accuracy of data stream pattern mining.

Figure 1.1: NZ Retail data from 12-2017 to 03-2018 [39]
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Figure 1.2: NZ Retail data from 03-2018 to 06-2018 [39]

Currently when a change is detected by the concept drift detector, the entire existing

set of rules previously found are discarded and we re-mine the rules from the new data

in the data stream. This is an inefficient method since there is a possibility that only

a small portion of the rules have changed and discarding and re-mining entire sets to

discover small changes is not ideal. There is also the problem of setting a proper interval

value to discard and re-mine. If we discard and re-mine too frequently, the running cost

will be high. One the other hand, if we discard and re-mine too infrequently, we risk

not picking up the correct rules within the time-frame. For example, using supermarket

basket analysis data, consider the situation where the supplier for Cheerios had suddenly

stopped supplying Cheerios to the supermarket. As a consequence, future transactions

will not contain Cheerios and this leads to a concept drift. If we discarded and re-mined

at this time, the patterns containing Cheerios will be lost. If Cheerios immediately starts

to restock after we re-mined, we are not able to pick up the patterns related to Cheerios

again. Therefore, in this case, the disappearance of Cheerios could be identified as a

regional drift. Mining regional drifts allow us to better adapt to the intricate changes in

the patterns over time.

1.4 Research Questions and Objectives

In this dissertation we study adaptive association rule mining in data streams. Adaptive

association rule mining refers to updating learning models to react to the presence of

changes. The prior sections list the background and motivations, the specific research

questions that we look at are:
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1.4.1 Research Questions

1. Why pure “support-confidence” framework is not sufficient to solve some real-world

association rule mining problems?

2. Can we propose a working approach that facilitates the discovery of self-sufficient

itemset accurately and efficiently in data streams.

3. Can we define and introduce the problem of detecting concept drift in self-sufficient

itemset mining in data streams?

4. Can we develop a self-sufficient itemset mining technique that also detects and

adapts to different kinds of concept drifts accurately and efficiently in data streams?

1.4.2 Objectives

This dissertation focuses on developing algorithms that overcome the drawbacks of the

“support-confidence” mining technique and adapt to different kinds of concept drifts to

effectively acquire and learn knowledge from data streams. Our objectives are:

1. To address drawbacks of the pure “support-confidence” framework and compare it

with improved techniques such as Self-Sufficient itemset.

2. To establish adaptive self-sufficient itemset mining using not only the pure support

and confidence of items but also their associations with each other.

3. To develop a novel technique that detects and adapts to abrupt, gradual and regional

concept drifts that occurs in data stream.

4. To develop an algorithm that solves the problem of mining self-sufficient itemset in

an online mode along with concept drift adaption.

1.5 Contributions

The main contributions made by this dissertation are:

1. I review work from several disciplines which may be of relevance to the present sub-

ject of inquiry, and provide commentary on how the findings from these disciplines

may be useful (Section 2).

2. I provide a framework for mining self-sufficient itemset mining using not only the

pure support and confidence of items but also their associations with each other.

With this framework as a reference template, future work in this domain should be

able to proceed more adaptive and accurate. (Section 3).
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3. By applying this framework to transactional data streams, I am able to detects

and adapts to abrupt, gradual and regional concept drifts that occurs during the

self-sufficient itemset mining process and adapt to those drifts. This allows future

self-sufficient itemset mining achieve more accurate and stable results. (Section 3)

1.6 Structure of Dissertation

This dissertation is structured into the following chapters:

• Section 1 Introduction

We provide the reader with the relevant background to understand this dissertation.

• Section 2 Related Works

We introduce relevant research in association rule mining, self-sufficient itemset, and

concept drift mining. In particular, we detail seminal research and review the overall

state of the current research. We also review the difference in the works pertaining

to the traditional “support-confidence” technique versus the self-sufficient itemset

discovery framework.

• Section 3 Self-sufficient Itemset Stream Mining

We propose our Adaptive self-sufficient Itemset Miner (ASSIM) framework, discuss

how its components interacts with each other, and explain how ASSIM improves

the mining process of self-sufficient itemsets.

• Section 4 Experiments

We perform several experiments on evaluating the key components of ASSIM by

comparing their computational costs, precision & recall, and other important mea-

sures.

• Section 5 Conclusion

We conclude the work, point out future directions and add some final reflections

and remarks.



2
Related Works

Association discovery [37] is one of the most researched topics in data mining. However,

the fielded applications appear to be relatively few, especially for applying association rule

mining techniques to data streams, which becomes more common in real-world scenarios.

It has been suggested that this is due to the susceptibility of conventional association

discovery techniques to finding large numbers of associations that are unlikely to be in-

teresting to the user [45]. In this chapter I will survey and summarise the literature of

association rule mining and how to detect and adapt to the concept drifts.

The structure of this chapter is as follows. Section 2.1 discusses basic knowledge of

data streams. Section 2.2 discusses the preliminaries on association rule mining and some

mainstream association rule mining techniques. Section 2.3 discusses basics of concept

drift and several popular drift detectors. Section 2.4 explains the definition of self-sufficient

itemset and why we adopted it in our proposed framework. Section 2.5 summarises this

section.

2.1 Data Stream Basics

In this section, several basic definitions of data stream will be discussed first, followed by

discussing the current general processing approaches.

A data stream is a sequence of data instances arriving continuously. It is considered

to be dynamic and unbounded in size with data generated at a very fast pace. Generally,

9



10 Related Works

a dynamic data stream cannot be processed in the same way as a static database. Dy-

namic data streams requires one-pass techniques using either batch processing or online

processing of data.

In this dissertation, our concentration is transactional data stream which consists

infinite number of transactions.

Definition 2.1.1 (Transactional Data Stream). A data stream D with n elements

is defined as D = {T1, T2, ..., Tn}, where by Ti represents a transaction at time i. Each

transaction contains a set of items T = {x1, x2, . . . xm}, where by xj represents an item.

Next, we will review the the mainstream processing approaches of data stream.

2.1.1 Processing Approaches

Due to the constraints of data streams: one-time access, continuous processing, limited

memory, and fast response, data stream processing needs to be very efficient and com-

putationally affordable. There are a number of different streaming methods proposed for

data streams but there are two approaches that are predominantly considered: batch pro-

cessing approach and sliding-window approach. Read et al. [38] provides a comparison of

processing approaches in data streams.

Batch processing approach

Batch processing divides data stream into batches, different batches will be fed into mining

techniques to solve tasks. The batch generation criteria can be time on how long data

will be collected before dispatching processing on it or a fixed interval on data stream.

Figure 2.1: An example of batch processing approach
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Sliding-window approach

In the sliding window approach, data is processed after the arrival of every single data

instance. A sliding window generally has a fixed size and data is kept in the window based

on the first in first out (FIFO) rule. The window moves when new data instance arrives,

it slides to store the new data by dropping the oldest instance in the window, which keeps

data in the window updated at any time point.

Figure 2.2: An example of sliding-window approach

2.2 Association Rules

To discover interesting patterns and relationships in data streams, association rules mining

plays a key role in mining data streams. Firstly, the definition of frequent itemsets is

introduced to help understand and create association rules.

Definition 2.2.1 (Frequent Itemset). Frequent itemset, as it appears to mean, is

itemset which appears frequently in a data stream. To determine if an itemset is frequent

or not, the definition of support value is introduced: the support of an itemset X with

respect to data stream D with n transactions is defined as the proportion of transactions

T in the dataset which contains the itemset X.

support(X) =
|T ∈ D, X ⊆ T |

|n|

Usually, a preset minimum support threshold is used to determine if an itemset is

frequent or not. Once the support of an itemset surpass the minimum support threshold,

it can be determined as a frequent itemset.

Here we use a sample database in Table 2.1, it consists five transactions with seven

distinct items, and the minimum support threshold is set to 2.
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Table 2.1: Set of Five Transactions

Transactions (tid: items)
1: a, b, c, d, e
2: a, b, c, d, f, h
3: a, f, g
4: b, e, f, g
5: a, b, c, d, e, h

Definition 2.2.2 (Association Rules). Association rules are if-then statements that

help to show the probability of relationships between data items within data streams.

They are calculated from itemsets, which are made up of two or more items, using the

measure of support, confidence and lift.

To mine association rules, both LHS and RHS of a rule shall come from the frequent

itemsets. Here another indicator confidence level is introduced to indicate how often the

rule has been found to be true.

The confidence value of a rule, X ⇒ Y , with respect to a set of transactions T , is the

proportion of the transactions that contains X which also contains Y .

confidence(X ⇒ Y ) =
support(X ∪ Y )

support(X)

Similar to frequent itemsets, when the confidence of a rule surpasses the preset mini-

mum confidence threshold, this rule might be labelled interesting.

2.2.1 Join-based Association Rule Mining Algorithms

The most basic join-based algorithm for association rule mining is Apriori algorithm [4].

Definition 2.2.3 (Apriori). The key concept of Apriori algorithm is the anti-monotonicity

of support value, it assumes that: all subsets of a frequent itemset must be all frequent.

Apriori uses a breadth-first search strategy to count the support of itemsets and uses a

candidate generation function which exploits the downward closure property of support.

A simple example of Apriori algorithm is shown below in Figure 2.3 using data from Table

2.1.
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Figure 2.3: An example of Apriori algorithm [41]

Because of its very expensive computational cost of scanning the whole data and sup-

port counting, there are numerous optimisations proposed during the last two decades.

Together with the proposal of the Apriori algorithm, Agrawal et al [4] proposed AprioriTid

and AprioriHybride as two practical optimisations. AprioriTid [4] replaces every transac-

tion in the database by the set of candidate itemsets that occur in that transaction, which

significantly reduces the time consumed counting support values. AprioriHybrid combines

Apriori and AprioriTid into a single hybrid which achieves a more flexible solution for

association rule mining [4].

Rather than AprioriTid and AprioriHybrid, there are also other techniques proposed

to optimise original Apriori algorithm, such as the work done in [3] and [32].

To speed up the Apriori method, DHP algorithm, also known as Direct Hashing and

Pruning method was proposed in 1995 [36].

Definition 2.2.4 (Direct Hashing and Pruning). There are two optimisations used

in DHP [36]. First, the candidate itemsets are going to be pruned when each new iteration

happens. Second, not every whole transaction will be fed, there will be a trimming process

of transactions to speed up the algorithm.

To avoid meaningless itemsets when the next new candidate itemsets need to gener-

ated, DHP uses hash functions to remove them in advance. While Apriori requires to scan

the entire database, which potentially massively increases the computational cost, DHP
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reduced the candidate itemset size. It has been proved that DHP performs significantly

faster than the original Apriori algorithm.

Figure 2.4 below gives a simple example of how DHP works. In this case, we will not

use the transactional data in Table 2.1 which is going to need a very long hash table.

Here we use a smaller database and perform DHP based on that.

Figure 2.4: An example of DHP algorithm [36]

To reduce the computational cost of support counting in association rule mining is to

find support of multiple frequent itemsets at one time. In 2004, Uno et al [42] proposed

LCM algorithm to use hyper-cube decomposition to achieve this goal.

Definition 2.2.5 (LCM Algorithm). The multiple itemsets obtained at the same one

time, comprise a hypercube in the itemset lattice. For a frequent itemset S, let H(S)

be the set of items a satisfying a > tail(S) and transactions T (S) = T (S ∪ {a}). Then,

for any P ⊆ H(S), T (S ∪ P ) = T (S) holds, and S ∪ P is frequent. LCMfreq [42] uses

this property. For two itemsets S and S ∪ P , we say that S ′ is between S and S ∪ P
if S ⊆ S ′ ⊆ S ∪ P . In the iteration with respect to S, we output all S ′ between S and

S ∪H(S) [42].

LCM saves about 2|H(S)| times of the frequency counting [42].
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2.2.2 Tree-based Association Rule Mining Algorithms

Another mainstream association mining technique is tree-based. They are based on set-

enumeration concepts, which uses a subgraph of the lattice of itemsets to explore the

candidate itemsets. Therefore, they will be used interchangeably, thus, the problem of

generating frequent itemset will be constructing a enumeration tree.

Definition 2.2.6 (AIS Algorithm). AIS algorithm was proposed by Agrawal et al

[2] in 1994, is basically a lexicographic tree algorithm. AIS constructs level-wise trees,

itemsets are counting based on the transactional database with corresponding levels. AIS

is a näıve mechanism, it searches the entire space without optimisation.

Many researchers proved that using vertical database layout could achieve significant

performance improvements comparing to traditional intersection based counting tech-

niques. Basically, for each transaction identifiers, one can have a list of items that are

contained in it. And this is often referred as tidlist. One of the earliest invention was Eclat

proposed by Zaki [47]. Here we will still use sample database in Table 2.1 to illustrate

the algorithms mentioned next, and the vertical representation of Table 2.1 is shown in

Table 2.2 below. In this case, for instance, itemset {a, b} can be computed as the length

of the intersection of the tidlists of a and b.

Table 2.2: Vertical Presentation

Frequent Items (Item: tidlists)
a: 1, 2, 3, 5
b: 1, 2, 4, 5
c: 1, 2, 5
d: 1, 2, 5
e: 1, 4, 5
f: 2, 3, 4
g: 3, 4
h: 2, 5

Definition 2.2.7 (Eclat). Eclat [47] uses intersection based approach to calculate item-

set support values in a vertical database. The partitioning approach is similar to Apriori

algorithm [4] but Eclat essentially generates candidate itemsets using only the join step

from Apriori.

First, Eclat gets tidlist for each item using DB scan. In this case, we use an item a as an

example. tidlist of a is exactly the list of transactions containing a. Next, Eclat intersects

tidlist of a with tidlists of all other items, resulting in tidlists of {a, b}, {a, c}, {a, d},
which is called a-conditional database (removed a). Eclat repeats from 1 on a-conditional

database and then repeats for all other items.
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Figure 2.5 [1] illustrates the itemset generation tree with support computation by

tidlist intersection for transactions in Table 2.1.

Figure 2.5: An example of Eclat [1]

Another mainstream popular tree-based algorithm is FP-Tree. It uses compressed

representations of the transactional database for more efficient counting.

Definition 2.2.8 (FP-Growth). The FP-Growth Algorithm, proposed by Han [19],

is an efficient and scalable method for mining the complete set of frequent patterns by

pattern fragment growth, using an extended prefix-tree structure for storing compressed

and crucial information about frequent patterns named frequent-pattern tree.

In the first pass, the algorithm counts occurrence of items (attribute-value pairs) in

the dataset, and stores them to ’header table’. In the second pass, it builds the FP-Tree

structure by inserting instances. Items in each instance have to be sorted by descending

order of their frequency in the dataset, so that the tree can be processed quickly. Items

in each instance that do not meet minimum coverage threshold are discarded. If many

instances share most frequent items, FP-Tree provides high compression close to tree root.

Now we can build an FP-Tree based on the support values of each distinct item in the

Table 2.1 which is illustrated in Figure 2.6 [1].



2.2 Association Rules 17

Figure 2.6: An example of FP-Tree [1]

When the situation becomes data stream mining, which means the data volume gets

incredibly large, FP-Tree becomes very computational costly in both run time and space

complexity. There are many existing researches [20, 14, 17, 16, 25, 40] focusing on tackling

these issues. Most of the optimisations can be divided into two categories, one is using

an advanced data structure to improve the performance like using arrays [17], another

one holds partitioned database in the memory, for instance, CFP-Tree [40]. Next, we are

going to briefly discuss these two different mechanisms.

Definition 2.2.9 (CFP-Tree). Compact FP-Tree (CFP-Tree) was proposed by Sucahyo

and Gopalan in 2004 [40]. CFP-Tree is able to save the same amount information of FP-

Tree but consumes 50% memory. CFP-Tree does not have nodes that contains item label

and support value, it maps item labels into index of thee head table - a sequence of

integers. CPF-Tree accumulates duplicated sub-trees and keeps details in the leftmost

branch, which achieves the compression of FP-Tree.

As FP-Tree constructs many conditional trees during the expansion, when the support

value gets very low or association rule gets very long, it may gets beyond the system’s
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affordability. CT-PRO algorithm solves this problem by adopting a non-recursive proce-

dure. CT-PRO divides database into different parts which individual will be treated as

a sole CFP-Tree independently. This significantly saves the memory use of the mining

process.

To save the time for FP-growth to traverse FP-Tree, Grahne and Zhu [17] used an

array-like structure to improve FP-Tree. There are usually two traversals in the procedure

of conducting FP-Tree, all frequent items are found during the first traversal and initialise

a FP-Tree at the same time by finishing its header table construction. Then followed by

the second traversal which will build a new tree. Grahne and Zhu [17] started with creating

an array during the first FP-Tree was construction to keep the information without the

first scan.

This technique works significantly well when the database is very sparse. Sparse

database requires more time for traversal which is massively reduced by using an array-

like structure.

After all the discussions we had on association rule mining techniques, we may still

need to get a rough idea of how data streams look alike before mining rules out from them.

There are many algorithms been developed to construct a synopsis for data streams. One

of the most important tasks is to get the top frequent items out from data streams.

2.2.3 Lossy Counting

Lossy Counting [31] provides a simple and efficient approximation for data stream to

identify all elements whose current frequency exceeds a support threshold.

1. First, divide data stream into fixed-sized windows.

2. Second, increment the frequency count of each item according to the new window

values. After each window, decrement all counters by 1.

3. Last, repeat and update counters and after each window, decrement all counters by

1.

In the end, the most frequently items will “survive”. Given a frequency threshold f , a

tolerance error e, and total number of elements N , all items with more than f×N−e×N
frequency will be returned as result. The primary window size is determined by the

error rate e: 1/e, and the number of windows will be dN × ee, the worst case we need

(1/e)× log(e×N) counters.
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Figure 2.7: Step 1: divide windows [30]

Figure 2.8: Step 2: increment counters [30]

Figure 2.9: Step 3: decrement counters by 1 at boundary
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2.2.4 Limitations of “Support-Confidence” Framework

Webb [45] pointed out that the traditional association rules mining techniques using

minimum support and confidence threshold has numbers of limitations when apply them

to most of the real-world scenarios.

First, there are some rare patterns which may be identified as frequent patterns by

mistake. For instance, in the supermarket basket scenario, some terms may appear to

be frequent but in fact, customers may act behalf of their company or friends which

potentially lead to misclassifications.

Also, minimum support technique is relevantly a crude mechanism. It is almost im-

possible to pre-set a perfect minimum support threshold in advance, before the whole

data stream is being analysed. Finding an appropriate threshold is usually tricky and

sometimes leads to errors.

Dense data cannot be analysed by minimum support technique. It works fine when

the terms in each transaction being relevantly infrequent. If numbers of terms appear fre-

quently in each transaction, then the algorithm will produce a large number of interesting

associations which is obviously wrong.

One of the most important, minimum support cannot be set low enough to capture

all valid rules. Nor can it be set high enough to exclude all spurious rules. Generally,

minimum support may be irrelevant to the interestingness of associations.

2.3 Concept Drift Mining

This chapter focuses on concept drift detection, starts with definitions and types of concept

drifts. Different kinds of drift detectors will also be discussed.

2.3.1 Concept Drift

Due to the inherent temporal aspect of data streams, the underlying data distribution

of streams may change over time, known as concept drifts. Concept drift can make the

machine learning model inaccurate because of the inconsistency between existing data

and new data.

A transactional data stream D with n elements D = {T1, T2, ..., Tn} where by Ti

represents a transaction at time i. At the time point t, let D1 = (T1, T2, ..., Tt), D2 =

(Tt+1, Tt+2, ..., Tn) be two instance of D, with 0 < t < n and their mean µ1 and µ2

respectively.

Definition 2.3.1 (Concept Drift Detection Problem). The concept drift detection

problem is a statistical hypothesis test with the null hypothesis H0 that µ1 = µ2 and the

alternative hypothesis HA, that is, µ1 6= µ2.
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If the two samples D1 and D2 are drawn from the same distribution, the null hypothesis

H0 is justified, otherwise, the alternative hypothesis HA is accepted, a concept drift has

been detected at the time point t+1. The position of this certain time point is also called

drift point.

In the data stream mining task, a concept drift may occur in different forms. In the

next section, we review the types of concept drifts that can occur during data streams.

2.3.2 Types of Concept Drifts

Concept drifts can happen in different forms, there are two common types of drifts: abrupt

drift and gradual drift.

Definition 2.3.2 (Abrupt Drift). An abrupt drift happens when there is a change

in underlying distribution occurs instantaneously. Once an abrupt drift is detected, it

usually means the whole distribution will remain changed after that point.

The figure below illustrates a simple example of an abrupt drift.

Figure 2.10: An example of abrupt drift

Definition 2.3.3 (Gradual Drift). Gradual drift, also known as incremental drift, is

different from an abrupt drift. While abrupt change is caused by distribution changes

instantaneously, gradual drift happens incrementally. This means between a potential

change happens and the whole distribution actually changes, the data stream may remain

the similar distribution as original.

A simple example of an gradual drift has been illustrated below.

Figure 2.11: An example of gradual drift



22 Related Works

2.3.3 Regional Concept Drift

Most distribution based drift detection methods assume that a drift occurs abruptly at

a time point, incrementally, or gradually in a time period [21]. As a result, the split

time point between old and new concepts is the key solution. However, this time-oriented

“one-cut” process could not adapt to the real-world scenarios well. Accordingly, the data

arrived before that drift point is discarded. Thus, if a drift only occurs in a small region

of the entire feature space, the other non-drifted regions may also be suspended, thereby

reducing the learning efficiency of models.

Figure 2.12: An example of regional drift

2.3.4 Drift Detectors

Definition 2.3.4 (DDM ). Drift Detection Method (DDM) is one of the earliest proposed

drift detectors. DDM was built based on the PAC learning model premise, it assumes

that the error rate decreases with more examples when the distribution is stationary.

DDM analyses the error rate and some statistics such as standard deviation. There are

normally two preset threshold: change and warning. When DDM detects an increase in

the error rate and it surpasses the change threshold, a drift will be detected and reported.

If the increase does not surpass the change threshold but the warning threshold, DDM

will report a warning zone which indicates there might be changes happening in the near

future.

Definition 2.3.5 (EDDM ). To improve the accuracy of detecting gradual changes in

data stream, Early Drift Detection Method (EDDM) was proposed by keeping track of

the average distance between two errors instead of only the error rate.

Similar to DMM, EDDM also has warning and change thresholds which are used for

determine change levels.

Definition 2.3.6 (Page Hinkley). Page Hinkley [35] method works by computing the

observed values and their mean up to the current moment.

Page Hinkley won’t output warning zone warnings, only change detection. The method

works by means of the Page Hinkley test. Page Hinkley Test works as a sequential analysis
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mechanism which is often used as a concept drift detector. In general lines it will detect

a concept drift if the observed mean at some instant is greater then a threshold value

lambda [35].

Definition 2.3.7 (ADWIN ). ADWIN stands for ADaptive WINdowing, is an adaptive

sliding window algorithm for detecting change, and keeping updated statistics about a

data stream.

ADWIN decides the size of the window by cutting the statistics’ window at different

points and analysing the average of some statistic over these two windows. If the absolute

value of the difference between the two averages surpasses a pre-defined threshold, change

is detected at that point and all data before that time is discarded.

ADWIN guarantees rigorous performance, by bounding its false positive and negative

rates, which makes it an ideal solution for high-precision required situations.

2.4 Self-Sufficient Itemsets

While there are large amounts of literature on identifying and discovering association

rules [37, 2, 6, 7]), they are all heavily reliant on using a support threshold to derive inter-

esting association rules. The existing literature on identifying and discovering interesting

rules beyond using support or frequency of occurrence is relatively sparse. Webb [43]

points out that many pattern mining algorithms suffer from type-I errors which usu-

ally identifies infrequent itemsets as frequent. To deal with the drawbacks of the pure

“support-confidence” framework for pattern mining, Hamalainen [18] proposed a solution

which handles non-monotonicity. It also prunes redundant rules on-line. The quality of

rules is estimated by the Fisher’s exact test. ‘Self-sufficient itemsets” [44] were created to

solve this dilemma by contributing a set of constraints and statistical tests that can be

applied during and after itemset discovery to identify itemsets whose frequency cannot

be explained solely by either higher or lower-order interactions between factors within the

data.

To improve the pure “support-confidence” framework, Webb [44] defined self-sufficient

itemsets, which proposed itemset leverage. Itemset leverage is a measure for the degree of

potential interest that arises naturally from the tests developed in [44] by checking their

productivity and non-redundancy. We further adapted the method by using Fisher’s exact

test to check for the minimum support threshold as well. This has been used in previous

techniques [18, 44].

To be self-sufficient, an itemset must be productive, non-redundant and independently

productive.

Firstly, we introduce the definition of cover, similar to support, which helps us under-

stand how self-sufficient itemset.
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Definition 2.4.1 (Cover). The cover of an itemset x is the set of TIDs which contains

x:

cov(x,D) = {i : 1 ≤ i ≤ |D| ∧ x ⊆ Di} (2.1)

Definition 2.4.2 (Fisher’s exact test). Fisher’s exact test is the main statistical test

used to define self-sufficient itemset. It is a statistical test used to determine if there are

nonrandom associations between two categorical variables.

Let there exist two such variables X and Y , with m and n observed states, respectively.

Now form an m× n matrix in which the entries aij represent the number of observations

in which x = i and y = j. Calculate the row and column sums Ri and Cj, respectively,

and the total sum:

N =
∑
i

Ri =
∑
j

Cj (2.2)

of the matrix. Then calculate the conditional probability of getting the actual matrix

given the particular row and column sums, given by:

Pcutoff =
(R1!R2! · · ·Rm!)(C1!C2! · · ·Cn!)

N !
∏

i,j aij!
(2.3)

which is a multivariate generalisation of the hyper-geometric probability function. Now

find all possible matrices of non-negative integers consistent with the row and column sums

Ri and Cj. For each one, calculate the associated conditional probability using Eq. 2.3,

where the sum of these probabilities must be 1.

Definition 2.4.3 (Productivity). An itemset has to satisfy the following condition to

be self-sufficient: any partition of it into two subsets of terms must be positively correlated

with each other.

P (R ⊇ x) > max
y(x

(P (R ⊇ y)P (R ⊇ x \ y)) (2.4)

It is hard to obtain the probabilities which leads us to perform a statistical test. In

this case, Fisher’s Exact Test is being used. The p-value for the case whether itemset x

and y of dataset D are positively correlated should look like this:

pF (x, y,D) =
ω∑

i=0

(
#(x,D)

#(x,y,D)+i

)(
#(¬x,D)

#(¬x,y,D)+i

)(
n

#(y,D)

) (2.5)

where ω = min(#(x,¬y,D),#(¬x,¬y,D)). [44]

To test productivity for an itemset m , all of its partitions need to be passed the

Fisher’s test.
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p(m,D) = max
x(m

(p(x,m \ x,D)) (2.6)

Definition 2.4.4 (Redundancy). Redundancy test provides another criteria to filter

itemsets that are unlikely to be interesting. If an itemset x has a subset y which contains

an item i that subsumes y \ i, we define x as redundant. This has also been discussed for

constraints of association rule mining. [5]

∃i, y : i ∈ y ∧ y ( x ∧ cov({i}) ⊇ cov(y \ i) (2.7)

Definition 2.4.5 (Independent Productivity). In terms of quantifying interesting-

ness, the Min Partition Measure (MPM) is used. Webb [44] suggests that itemset mea-

sures should be developed from a rule measure by selecting the least extreme value that

results from applying the measure to any rule that can be created by partitioning the

itemset x into an antecedent y and consequent z = x \ y. In this work, two measures:

leverage, δ and lift, γ have been used as the formulas Eq. 2.8 and Eq. 2.9 illustrated

below:

δ(x) = min
y(x

(sup(x)− sup(y)× sup(x \ y)) (2.8)

γ(x) = min
y(x

(sup(x)/[sup(y)× sup(x \ y)]) (2.9)

2.4.1 OPUSMiner

OPUSMiner [43] is developed to find the top-k productive, non-redundant itemsets from

transaction data. The OPUS Miner algorithm uses the OPUS search algorithm to ef-

ficiently discover the key associations in transaction data, in the form of self-sufficient

itemsets, using either leverage, δ as in Eq. 2.8 or lift, γ as in Eq. 2.9.

OPUSMiner is conducted with four parts: expandItemset, checkPartitions, checkIm-

mediateSubsets and checkIndeproductive. Each part will achive the cooresponding task

which is a compulsory condition for an itemset to be self-sufficient.

1. expandItemset: explore all supersets of a generated itemset X from beginning by

adding items in the frequent item list q.

2. checkPartitions: check the binary partitions of itemset X. Return the minimum

value of δ and γ and the maximum p-value p with respect to any partition.

3. checkImmediateSubsets: check all subsets of X formed by removing a single item

to determine whether X fails the Apriori test and whether supersets of X must fail

either the Apriori or redundancy test.
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4. checkIndeproductive: post-process the top k itemsets to determine whether they

are independently-productive.

OPUS Miner systematically traverses viable regions of the search space, maintaining

a collection of the top-k productive non-redundant itemsets in the search space explored.

When all of the viable regions have been explored, the top-k productive non-redundant

itemsets in the search space explored must be the top-k for the entire search space.

2.4.2 Concept Drifts in Self-Sufficient Itemsets Mining

According to [34], an important problem in the streaming scenario is classification, where

data is labelled into categories or classes. As data streams are considered to be non-

stationary, the distribution of data and their class labels will likely change over time.

Concept drift detection methods are used to monitor classification errors from classifiers

(with binary input where 0 is a correct classification and 1 is a misclassification) to identify

when changes happen. In our scenario, we want to determine how frequent potential

‘interesting’ itemsets occur in the data stream. The measure we used to feed our drift

detector with will be the binary occurrence of itemsets in each transaction of the data

stream (0 if itemset is not present and 1 if itemset is present). Gama et al. [15] gives

an overview of mainstream drift detectors used for data stream. One of the most widely

used detector is ADWIN [8]. ADWIN detects concept drifts using an adaptive windowing

strategy and signals drifts if the absolute value of the difference between any two windows

surpasses a pre-defined threshold, derived from Hoeffding Bound.

2.5 Summary of Literature

There are many researches focusing on the field of association rule mining and concept

drift mining. We reviewed the research problems and studies their proposed solutions and

methodologies.

In association rule mining, the major problem is to discover significant patterns out

from unlabelled item based data which usually comes in a form of transaction, as known

as transactional data stream using unsupervised machine learning techniques. Traditional

“support-confidence” framework like Apriori [4] and FP-growth [19] has been adopted to

solve most of the association rule mining problems in the past decades, its drawbacks has

become an issue for association rule mining. We reviewed several new association rule

mining algorithms proposed to solve these drawbacks such as improving the adaptability

of support threshold [28], adding statistical tests to filter rules [18] and defining new

restraints to create association rules [45, 44].
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Concept drift mining focuses on detecting the underlying distribution change and

adapting to the drifts detected. Drifts have different types such as abrupt, gradual and

regional drifts. The difference between abrupt and gradual drifts is the time they occur:

abrupt drifts only happen in a very short period or time while gradual drifts may need

longer period. Regional drifts are those drifts which occur during a specific period of

time. Many concept drift detectors have been proposed to solve the problem, we have re-

viewed them in different categories in statistics control (e.g. EDDM and DDM), sequential

analysis (e.g. Page Hinkley), and sliding-window monitoring (e.g. ADWIN).
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3
Self-Sufficient Itemset Stream Mining

Our earlier chapters have introduced definitions and problems that target mining interest-

ing association rule from unlabelled data streams where data is transactional item-based

using unsupervised learning. In this chapter, we focus on how to discover self-sufficient

itemsets from unlabelled data streams.

There has been some research in the area of interesting association rule mining where

researchers try to capture patterns involving events that happens frequently or appear in a

certain pattern in a static dataset. Although much of the research focus in using “support-

confidence” framework on finding association rule, self-sufficient are shown to be more

accurate and adaptive by using several statistical tests. Until now, most of the research

on this area concentrates only on finding self-sufficient itemsets in a static dataset. With

the proliferation of applications which generate data streams, such as network logs and

banking transactions, applying techniques that mine from static datasets onto dynamic

data streams is not practical. In this chapter, we address the research problem of mining

self-sufficient itemsets from dynamic data streams and propose an adaptive approach.

The main contributions of this chapter are:

• We propose a novel approach called Adaptive self-sufficient Itemset Miner (ASSIM),

which facilitates discovery of self-sufficient itemsets in a data stream environment

with regional drift detection.

• With ASSIM we discuss the idea of using a sliding window to achieve actual online

learning for data stream rather than batch processing.
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3.1 Adaptive Self-Sufficient Itemset Miner (ASSIM)

To mine self-sufficient itemsets and to solve the regional concept drift problem at the

same time, we propose a new technique: Adaptive self-sufficient Itemset Miner (ASSIM).

ASSIM is able to mine self-sufficient itemsets in an online mode, and at the same time,

detect regional drifts among generated self-sufficient itemsets and adapt the drifts to the

self-sufficient itemset generation process.

The current self-sufficient miner [44] is designed for static databases. To use this

technique unaltered on a data stream has its pitfalls. This includes regional concept

drifts that may occur over time in data stream, making previously generated self-sufficient

itemsets inaccurate. We can adapt self-sufficient miner by generating itemsets at fixed

intervals but this is inefficient, and there may be a delay between when changes happen

in the data stream to when the new set of itemsets are generated. Another possibility is

that if the intervals are set too far apart we may miss out on generating those itemsets

all together. Our framework is designed to overcome this problem.

Batch Size Calcu-
lator

D = T1, T2, . . . Tn

Input (Data Stream)

Self-sufficient
Itemset Gener-
ator

Regional
Concept Drift
Adaptor (RCDA)

Self-sufficient Itemsets

Figure 3.1: Framework of Adaptive Self-sufficient Itemset Miner

An illustration our ASSIM framework is shown in Fig. 3.1. It gives a general idea of

the structure of ASSIM and how the data flows inside ASSIM. As transactions are fed

into ASSIM, they will be processed first in the Batch Size Calculator (BSC) to get an

appropriate batch size before we enter the itemset mining process. The calculation of

the batch size is crucial to avoid over-fitting. We realised that there are possible minor

fluctuations within a data streams. Thus, a stable bucket allows for a more representative

sample to be used in the mining process.

Using the calculated batch size, the self-sufficient Itemset Generator (SSIG) can be

used to generate self-sufficient itemsets. All generated self-sufficient itemsets will be

checked for potential regional concept drifts by the Regional Concept Drift Adaptor

(RCDA). Once a regional drift has been detected, RCDA will check the drift type and

determine whether SSIG needs to generate new self-sufficient itemsets from the drift point

or not.

Our Adaptive Self-Sufficient Itemset Miner algorithm is shown in Algorithm 1 which

presents the top level of the technique and how its parts interact with each other.



3.2 Batch Processing 31

Algorithm 1 Adaptive Self-Sufficient Itemset Miner (ASSIM)

Input: data stream D of transactions {T1, ..., Tn}, k
Output: result(set of self-sufficient itemsets: S);

1: while exist(D) do
2: frequentItems← BSC(D)
3: stable batches ← BSC(D)
4: S ← SSIG(k, frequentItems);
5: RCDA(S : {s1, ..., sm}, D: {T1, ..., Tn})
6: S ′ ← RCDA(S,D)
7: S ← S + S ′

8: end while
9: return set of self-sufficient itemsets S

3.2 Batch Processing

The Batch Size Calculator (BSC) is the first part of our ASSIM framework. It was

designed to handle frequency counting and batch size calculation. It provides an ap-

proximation of items’ frequencies. The main purpose of this is to ensure that a proper

stable batch size was used before we mined for self-sufficient itemsets. As with any data

streams, selecting an adequate learning window is essential to ensure the quality of the

results produced. If the batch size is too small, the variance of the itemsets produced may

be an issue. If the batch size is too large, then there is a lag or time delay between when

transactions happen to when it is mined.

Data stream mining requires a stable and comparable batch size to represent the cur-

rent state. In this case, Lossy Counting [31] has been used because of its low computational

cost which improves both memory and run-time processing. As only an approximated

ranking list is needed, for the expansion process we used Lossy Counting. To use Lossy

counting, we divide the incoming data stream into buckets. We keep a running histogram

of the unique items for each transaction in the data stream. If items appear in a trans-

action within a bucket size, we increment the frequency count of those items. At the end

of each bucket, we decrement each of the counters by 1. At the end, the most frequently

viewed items ‘survive’.

3.2.1 Stable Batch Size

A data stream of items {x1, x2, x3, , xm}(t) are the inputs at time t to BSC, whereby m is

the number of unique items. Their frequencies will be calculated using Lossy Counting,

and generate a list of top n frequent items {a1, a2, . . . , an}(t). Meanwhile, in order to

calculate a stable and comparable batch size for the self-sufficient Itemset Generator, the

distribution of each frequent items D(t) = {da1, da2 , . . . , dan }(t) in each Lossy Counting

bucket will be calculated and compared with the prior bucket of D(t−b) = {da1, da2 , . . . ,
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dan }(t−b), where b is the bucket size.

When a new bucket has been processed, we average the frequency differences of top

k frequent items (picked from Lossy Counting) between the current bucket and the prior

one. If the average frequency difference is larger than threshold τ ,

1

k

∑
da

(t)
k −

1

k

∑
da

(t−b)
k > τ,

we report the bucket number B and the first batch size will be B × (1/e) whereby e is

the tolerance error rate for the approximation.

Our Batch Size Calculator algorithm is shown in Algorithm 2.

Algorithm 2 Batch Size Calculator (BSC)

Input: data stream D, threshold τ , tolerance error rate e;
Output: batchSize, result(set of stable batches);

1: while exist(D) do
2: lossyCounting(D);
3: frequentItems {a1, a2, ..., an} ← result from lossyCounting;
4: bucketSize b← 1/e;
5: D(t) = {da1, da2 , . . . , dan }(t) ← distribution of each frequent item in a bucket;
6: compare D(t−b) with D(t);
7: if average frequency difference > τ then
8: report the current bucket number B;
9: batchSize ← B × (1/e);
10: end if
11: end while
12: return set of stable batches

An Example of BSC Given the dataset in Table 3.1, we show how stable batches built

using BSC. Table 3.2 lists the items which have more than 30% support in the dataset,

which are used for calculating stable batches in Figure 3.2. In this example, threshold τ

is set to 25%, tolerance error rate e = 1/3.

Table 3.1: Set of Transactions in 4 Buckets Each with Length 3

Transactions (tid: items)
1: a, g h 7: g
2: a, g, h, i 8: c, h
3: b, c, d, f 9: c, d, h
4: b, d, j 10: b, f
5: c, f, h 11: a, h
6: a, e, g, h 12: a

Figure 3.2 illustrates the process of stable batch size calculation. It monitors the

distribution differences between Lossy Counting buckets. In this example, frequency
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Table 3.2: Frequent Items with Frequencies

Frequent Items (item: frequency)
h: 6 g: 4
a: 5 c: 4

difference between Bucket 3 and Bucket 4 is 50% which is over τ = 25%, so the number

3 will be report to divide batches. The first stable batch will have a size 3× 1/e = 9.

Figure 3.2: Distribution difference calculation

3.3 Self-Sufficient Itemset Generation

We adapted the OPUS Miner proposed by Webb [44], for a dynamic streaming data. For

a user-specified k (k = 100 by default) and interest measure, OPUS Miner find the top-k

productive non-redundant itemsets (as known as self-sufficient itemsets).

The original algorithm establishes a queue of items ordered in descending order on

the upper bound on the value of any itemset that can include the item. However, one
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particular constraint with data stream algorithms is that there is only a one or limited

pass through the data stream capability. This means the ability to run through an re-

order of information is limited. In our self-sufficient Itemset Generator technique, we used

the frequency counts from BSC to order the items instead.

BSC provides an approximation of frequency counts for items, which helps us replace

the static counting algorithm used in the original SSIG. The mining of the itemsets remains

unmodified from the original version.

Our Self-Sufficient Itemset Generator algorithm is shown in Algorithm 3.

Algorithm 3 Self-Sufficient Itemset Generator (SSIG)

Input: k, frequentItems ;
Output: result(S: set of self-sufficient itemsets);

1: OPUSMiner(k, frequentItems)
2: S ← result from OPUSMiner(k, frequentItems)
3: return S: set of self-sufficient itemsets

SSIG uses the list of frequent items obtain from BSC. We check for their interestingness

and start to expand them into potential self-sufficient itemsets. Each newly generated

itemsets and their partitions will be passed into SSIG to check for productivity and

non-redundancy. Finally, all itemsets that passes the aforementioned constraints are

considered as self-sufficient itemsets, S.

Table 3.3: Set of 18 Transactions for SSIG

Transactions (tid: items)

1: a, g, h 7: g 13: a, c, h

2: a, g, h, i 8: c, h 14: e, f, g

3: b, c, d, f 9: c, d, h 15: a, b, e, h

4: b, d, j 10: b, f 16: d, e, h

5: c, f, h 11: a, h 17: a, e, g

6: a, e, g, h 12: a 18: a, d, e, h

An Example of SSIG Use the given dataset above in Table 3.1, we extended 6 more

transactions for better mining result: Table 3.3. In this example, we will feed the following

18 transactions to SSIG to mine self-sufficient itemsets.

The mined self-sufficient itemsets from are {a, e}, {c, h}, and {e, h}.

3.4 Regional Concept Drift Adaption

To retrieve non-drifted information from suspended historical data, similar to the buffer

system [29] used to find the best drift time point to identify concepts, we proposed a
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simple solution to identify regional drifts and integrate it into our self-sufficient itemset

mining process.

The Regional Concept Drift Adaptor (RCDA) plays a key role in our ASSIM frame-

work. It detects regional concept drifts in the generated self-sufficient itemsets. It analyses

concept drifts and make decisions on where and when to re-mine additional items using

SSIG.

RCDA uses a well known drift detector, ADWIN [8], to detect concept drifts in the data

streams. ADWIN monitors the changes in distribution between two windows, specifically,

the distribution of the support of the self-sufficient itemsets found after the previous

drift point, and the updated distribution of the supports that represents the current

distribution. If there is a significant difference between the two windows a change is

signalled.

The näıve way to adapt to concept drifts is to re-mine the itemsets each time a drift

has been detected, discarding all the old itemsets. This is inefficient as we may have lost

valuable itemset information that may still be current.

Our Regional Concept Drift Adaptor algorithm is shown in Algorithm 4.

Algorithm 4 Regional Concept Drift Adaptor (RCDA)

Input: data stream D, a set self-sufficient itemsets S;
Output: Updated set of self-sufficient itemsets S;

1: Initialise window W for ADWIN and empty buffer B
2: for each self-sufficient itemset s in S do
3: ADWIN(s, D)
4: if drift detected then
5: i← number of TID when drift detected
6: if s ∈ {T1, T2, ..., Ti} then
7: update sup(s)
8: else
9: B ← Ti

10: end if
11: ADWIN(s, {Ti, ..., Tn})
12: if next drift signalled then
13: S ′ ← SSIG(B)
14: end if
15: end if
16: end for
17: Append new self-sufficient itemsets S ′ to S: S = S + S ′

18: return set of updated self-sufficient itemsets

RCDA is designed to overcome this problem by storing previously mined self-sufficient

itemsets along with its frequency. The approach works as follows. Each itemset is mon-

itored using its own drift detector. As a transaction, T , in the data stream appears we

check whether it contains any of the self-sufficient itemsets S, whereby ∃S ∈ T . If the
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itemsets exists, we will update the support of the itemsets. If none of the itemsets in S

exist in T then we store the transaction in a buffer, B. We re-mine B using SSIG when

the next drift point is signaled.

The intuition is that transactions that do not contain pre-existing itemsets may contain

new knowledge on the data. Thus, by capturing and re-mining that portion of the stream,

we are essentially looking for new itemsets that are just appearing in the new incoming

data stream. This region of data do not contain any previously found itemsets would not

be considered from the same distribution.

We also remove any itemsets that are no longer found in the current data stream.

For example we may have an self-sufficient itemset A that has appeared in the data

stream previously but the support of this itemset has drop significant in the current time

window measured from the previous drift point to current point, and no longer satisfy the

thresholds.

An Example of RCDA Use the given dataset above in Table 3.3. In this example,

we will perform regional drift detection on two self-sufficient itemsets mined from SSIG:

{a, h} and {e, h}.

Table 3.4: Set of 18 Transactions for RCDA

Transactions (tid: items)

1: a, g, h 7: g 13: a, c, h

2: a, g, h, i 8: c, h 14: e, f, g

3: b, c, d, f 9: c, d, h 15: a, b, e, h

4: b, d, j 10: b, f 16: d, e, h

5: c, f, h 11: a, h 17: a, e, g

6: a, e, g, h 12: a 18: a, d, e, h

Our drift detectors use occurrences of self-sufficient itemset in each transaction as

input, which is either TRUE (1) or FALSE (0). The input and result of {a, h} and {e, h}
will be shown in Table 3.5 and Table 3.6.

Table 3.5: RCDA Detects Drifts for {a, h}

Transactions (tid: occurrence of {a, h})
1: 1 7: 0 ← drift 13: 1

2: 1 8: 0 14: 0

3: 0 9: 0 15: 1

4: 0 10: 0 16: 0

5: 0 11: 1 ← drift 17: 0

6: 1 12: 0 18: 1
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Table 3.5 gives the first drift point which is at TID 7, which will trigger RCDA to

check for {a, h}’s occurrence before TID 7. In this case, {a, h} exists in TID 1, 2 and 6,

so we update the support of {a, h} to 3 and keep running RCDA on the rest of the data

stream.

Table 3.6: RCDA Detects Drifts for {e, h}

Transactions (tid: occurrence of {e, h})
1: 0 7: 0 13: 0

2: 0 8: 0 14: 0

3: 0 9: 0 15: 1 ← drift

4: 0 10: 0 16: 1

5: 0 11: 0 17: 0

6: 1 ← drift 12: 0 18: 0

Table 3.6 above detects the first drift point at TID #6. When RCDA starts to look

at the occurrence of {e, h} before TID #6, it comes out zero. In this case, we store this

transaction TID #6 : a, e, g, h in a buffer B and wait for the next drift signal. At TID

#15, RCDA is triggered to start SSIG to remine the buffer B. The result will be appended

into the old set of self-sufficient itemsets mined by SSIG.

3.5 Sliding-window Model

The methods that incrementally mine association rules in dynamic databases have been

widely discussed [10, 27, 11]. In these methods, all the frequent itemsets and their support

counts derived from the original database are retained. When transactions are added or

expired, the support counts of the frequent itemsets contained in them are recomputed. By

reusing the frequent itemsets and their support counts retained, the number of candidate

itemsets generated during the mining process can be reduced. All these methods have

to re-scan the original database because non-frequent itemsets can be frequent after the

database is updated. Therefore, they cannot work without seeing the entire database and

cannot be applied to data streams.

To make ASSIM work on an actual online mode, we propose a sliding-window model

to solve the problem of incremental mining of self-sufficient itemsets in data streams.

3.5.1 Sliding-window Miner (SM)

Our sliding-window miner uses a time-sensitive sliding-window model to solve data stream

mining problem in a online mode which was proposed by Chen et al. [23].
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Time-sensitive Sliding-window (TS)

Given a time point t and a time period p, the set of all the transactions arriving in

[t − p + 1, t] will form a basic block. A transactional data stream is decomposed into a

sequence of basic blocks of transactions, which are assigned with serial numbers starting

at 1. Given a window with length |W |, we slide it over this sequence to see a set of

overlapping sequences, where each sequence is called the time-sensitive sliding-window

TS.

Let the basic block numbered i be denoted as Bi. The number of transactions in Bi

is denoted as |Bi|, which is not fixed due to the variable data arrival rate. For each Bi,

the TS that consists of the |W | consecutive basic blocks from Bi−|W |+1 to Bi is denoted

as TSi.

Self-Sufficient Itemsets in TSi

An itemset x is self-sufficient in TSi(Bi) if x is productive, non-redundant and indepen-

dently productive, x needs to satisfy the following conditions:

1. Every subset y of x: y ⊂ x is associated with its complementary set: x \ y.

2. x contains no subset z: z ⊂ x, that contains an item i, that subsumes z ⊂ i.

3. The productivity of x cannot be explained by the productivity of its self-sufficient

supersets.

Owing to the characteristics of data streams, it is not realistic to scan the past basic

blocks recursively for mining self-sufficient itemsets in each of the subsequent TS. In this

section, we assume that only the summary information derived from TSi−1 is provided for

mining self-sufficient itemsets in TSi. We use a scenario to illustrate the mining process in

Figure 3.3, where the basic unit is transactions in the first hour and |W | is 4. As the new

basic block B4 comes, the oldest basic block B1 in TS1 is expired. To find self-sufficient

itemsets in TS2, we consider three kinds of itemsets from two sources, the self-sufficient

itemsets in TS1 and the self-sufficient ones in B5, as follows:

1. An itemset which is self-sufficient in TS1 still remains self-sufficient in TS2 after B5

appended.

2. Appended data stream B5 brings new self-sufficient itemsets.

3. An itemset which is not self-sufficient in TS1 becomes self-sufficient in TS2.

By utilising the definition of self-sufficient and the constraint of productivity and non-

redundancy, the following lemmas are generally used in Sliding-window Miner (SM).
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Lemma 3.5.1. An itemset which is self-sufficient in TS1 will still remains self-sufficient

in TS2.

Proof. According to the definition of self-sufficient itemset [44]: if an itemset x is self-

sufficient, every y ⊂ x will be associated with x \ y. After appending B5, the old associa-

tions between subsets of mined self-sufficient itemsets still exist which make the existing

self-sufficient itemsets remain true.

B5 may bring some new associations into the data stream, some itemsets determined

not self-sufficient may become self-sufficient. New items also bring some potential self-

sufficient itemsets consists with part of the new items.

Figure 3.3: Time-sensitive sliding-window model

3.5.2 Framework

Instead of dividing data stream into batches prior to the mining process, Sliding-window

Miner (SM) makes some adjustments to help SSIG work in an incremental data stream

which achieves the actual real-time mining.

Consider the two out of three kinds of self-sufficient itemsets mentioned above (the

first one has been approved not applicable), we check the appended data stream B5 for
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self-sufficient itemsets contains new-coming items first. This can be finished by running

our SSIG on the appended data stream B5 and store the results.

Next step is to mine itemsets which just turned self-sufficient after the update. These

can be those itemsets whose subsets did not have enough associations with the remainder

in the expired B1 and remaining B2, B3.

In this sliding-window method, we only use the frequency counter of BSC on TS1 to

generated a list of frequent items with their frequencies F . When TS1 has been fed into

SSIG to produce a set of self-sufficient itemsets S, the non-expanded items in F will be

separated into a new list F ′. A data stream may be divided into blocks with different

numbers of transactions. The buffer continuously consumes transactions and pours them

block-by-block into our system. When a new basic block or even a single transaction

produced, update F ′ if it contains any item from F ′ and feed F ′ into SSIG to generate

new self-sufficient itemsets. This process is illustrated in Fig 3.4.

Figure 3.4: How sliding-window miner processes new incoming data

3.5.3 Discussion

Sliding-window Miner has the ability to using a moving window to process data stream

incrementally which make up the drawbacks of batch processing we proposed in ASSIM.

Because of the limitation of time of this dissertation, we only discuss the Sliding-window
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Miner technique at the conceptual level. But it is worthy to be developed and experiment

its efficiency and compatibility on actual online learning.

3.6 Summary

Interesting association discovery is often a more complicated and computationally ex-

pensive task than frequent itemset mining. Besides the traditional “support-confidence”

framework for association rule mining, the definition of self-sufficient itemset changed the

way of determining interestingness of association rules. It is defined as each of a self-

sufficient itemset’s subset must be associated to its complement. The original efficient

self-sufficient miner, also as known as OPUSMiner, achieves an outstanding efficiency, also

proved effective and accuracy. While OPUSMiner was developed on a static database, to

satisfy the urgent need of data stream adaption, we remedy OPUSMiner by providing a

stable batch calculator to produce stable batches and sketch frequent items. To minimise

the error brings by underlying distribution changes, also as known as concept drifts in

data streams, we added a concept drift adaptor which is able to detect and adapt to

underlying drifts. Besides the fact that most mainstream concept drift detector discard

data prior to the drift point, which usually miss the regional drift. Our Regional Concept

Drift Adaptor provides regional drift detection and adaption for self-sufficient itemset

mining. Using batch processing is not actual online learning in fact, we also discussed the

sliding-winder miner, which uses a time-sensitive sliding window to mine self-sufficient

itemsets from a data stream.

In the next chapter, we will perform several experiments to test the efficiency and

effectiveness of our proposed framework.
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4
Experiments

In this section, we describe three groups of experiments conducted to evaluate ASSIM.

The first group examines the computational costs of ASSIM, time and memory use. The

second group evaluates the accuracy of BSC and RCDA by recording their precision and

recall values under difference circumstances. Lastly, we inject different kinds of drifts into

the data streams and test the efficiency and accuracy of our drift detector.

All experiments are conducted on a machine with Intel Core i7-7700 Desktop Processor

4 Cores with up to 4.2 GHz CPU with 32GB RAM.

4.1 Descriptions of the Datasets

We employed ten datasets including eight of the largest attribute-value datasets from the

UCI machine learning [13, 12] and UCI KDD [22] repositories together with the BMS-

WebView [24], retail [9] and chainstore from CUCIS[33] datasets. The other two are

synthetic datasets created by IBM data generator. These datasets are described in Table

4.1.

Each synthetic dataset configuration (T10I1KD100K and T15I1KD1M ) was gener-

ated with different seed values and passed into the algorithm 30 times. The other eight

real-world datasets were tested a single time each.

43
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Table 4.1: Descriptions of the Datasets

Dataset Description

T10I1KD100K synthetic dataset with an average transaction length 10
T15I1KD1M synthetic dataset with an average transaction length 15
mushrooms prepared based on the UCI mushrooms dataset
retail retail market basket data from a Belgian retail store
pumsb census data for population and housing
chess prepared based on the UCI chess dataset
connect prepared based on the UCI connect-4 dataset
accidents anonymized traffic accident data
BMS WebView click-stream data from a webstore used in KDD-Cup 2000
chainstore customer transactions from a retail store from NU-Mine Bench

4.2 Runtime and Memory Performance

We ran our ten datasets on BSC and SSIG separately to record the time and memory used

for each component of our technique. In this case, SSIG without batches represents the

ground truth which produces the truth result of Self-Sufficient itemsets in each dataset.

Table 4.2 illustrate that BSC works as a stable technique. It has a faster runtime

performance as compared from SSIG without batches. In our experiments, the tolerance

error rate for the approximation e = 0.05 and frequency difference threshold τ = 25%.

To further evaluate the efficiency of BSC, we also perform two additional experiments

for each dataset. In the additional set of experiments, we feed equally divided batches

into SSIG (divided into the same amount of batches as BSC but in fixed interval). This

is to show how runtime and memory performance is effected given the same number of

datasets. In the second set of experiments, we feed batches into SSIG separately based on

the pre-detemined size of the intervals found using BSC. To do this we noted the location

of the batch size found in BSC and then superimposed the same exact batch sizes for

SSIG. The significance level α = 0.05 was used for performing Fisher’s Exact Test in

SSIG.

This experiments was to evaluate the runtime and memory if we mined at the same

time point of BSC. Table 4.2 shows us that there is no significant difference between the

time and memory consumption between SSIG with a fixed interval and with pre-calculated

batches based found using BSC.
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Table 4.2: Runtime and Memory Performance

Dataset
BSC SSIG without batches

Time (s) Memory (Mb) Time (s) Memory (Mb)

T10I1KD100K 1.97± 0.92 210.28± 0.89 2.85± 0.33 148.41± 0.33
T15I1KD1M 35.24± 1.36 642.81± 2.01 47.42± 3.64 572.22± 0.97
mushrooms 0.54± 0.04 78.36± 0.27 1.09± 0.16 55.73± 0.21
retail 1.64± 0.29 192.45± 0.84 2.44± 1.02 136.85± 0.76
pumsb 0.92± 0.05 101.34± 0.76 1.49± 0.11 74.32± 0.19
chess 0.19± 0.02 25.92± 0.37 0.31± 0.10 10.78± 0.14
connect 1.85± 0.06 168.32± 1.92 2.11± 0.21 103.27± 0.35
accidents 8.24± 0.79 385.56± 2.34 2.87± 0.67 339.14± 0.68
BMS WebView 1.11± 0.12 119.38± 0.78 1.46± 0.40 91.25± 0.07
chainstore 38.21± 1.28 783.15± 2.35 51.97± 2.07 711.92± 1.06

Dataset
SSIG with fixed intervals SSIG with batches
Time (s) Memory (Mb) Time (s) Memory (Mb)

T10I1KD100K 3.04± 0.69 149.12± 0.30 3.05± 0.23 149.10± 0.27
T15I1KD1M 49.10± 2.41 574.11± 0.85 49.17± 1.94 574.12± 0.88
mushrooms 1.15± 0.11 56.09± 0.33 1.17± 0.23 56.12± 0.19
retail 2.69± 0.27 138.02± 0.81 2.82± 0.04 137.98± 0.84
pumsb 1.52± 0.11 75.65± 0.22 1.52± 0.12 75.61± 0.27
chess 0.39± 0.02 10.98± 0.07 0.39± 0.04 11.02± 0.08
connect 2.30± 0.10 104.25± 0.29 2.28± 0.09 104.23± 0.33
accidents 3.02± 0.32 321.01± 0.72 2.99± 0.17 320.88± 0.77
BMS WebView 1.57± 0.07 92.07± 0.15 1.57± 0.12 92.05± 0.17
chainstore 56.39± 0.27 714.24± 0.84 56.41± 0.19 714.25± 0.86

4.3 Experiments to Evaluate Precision and Recall

As a result of using Lossy Counting [31] in BSC, all the frequent items produced by BSC

are true positives. Thus producing 100% precision. Lossy Counting in BSC only provides

an approximation to the frequency of an items a batch. Some of the frequent items, which

should have been included for expansion to Self-Sufficient itemsets may be missed. This

would lead to recall being less than 100%. We use the SSIG without batches as the ground

truth of the set of self-sufficient itemsets found.

With the batch calculation from BSC, the correctly detected batches of data stream

achieved better precision and recall values for Self-Sufficient itemset mining as compared

to SSIG with fixed intervals or SSIG with batches.
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Table 4.3: Precision and Recall

Dataset
BSC SSIG with fixed intervals SSIG with batches

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

T10I1KD100K 100%± 0% 97%± 2% 96%± 1% 98%± 2% 97%± 2% 98%± 1%
T15I1KD1M 100%± 0% 98%± 1% 93%± 3% 95%± 4% 96%± 2% 99%± 1%

mushrooms 100% 97% 97% 99% 97% 97%
retail 100% 98% 95% 96% 97% 97%
pumsb 100% 98% 96% 94% 97% 94%
chess 100% 100% 100% 98% 100% 99%
connect 100% 98% 95% 97% 95% 97%
accidents 100% 96% 93% 94% 98% 98%
BMS WebView 100% 99% 96% 95% 99% 97%
chainstore 100% 95% 95% 97% 96% 99%

4.4 Experiments to Evaluate the Regional Drift De-

tection

In the drift detection part, we perform two different tests: abrupt and gradual drift

detection on T10I1KD100K dataset. The delta value δ = 0.002 was set for ADWIN drift

detector. For abrupt drifts, we inject different numbers of abrupt drifts, specifically 5, 10

and 20 into T10I1KD100K. Several indications were recorded: time and memory costs,

true and false positives, and delay. Based on the results the increase of drift points, this

leads to worse false positives.

To evaluate gradual drift detection, we used the same dataset T10I1KD100K but

changed data in different rates noted as the slopes, specifically 250, 500 and 1,000. Same

indications were used for this test, and it showed that higher slopes produce worse false

positives and longer delay.

Table 4.4: Abrupt Drift Detection

#Drifts Time (s) Memory (Mb) TP Rate (%) FP Delay

5 6.42± 0.11 23.1± 0.07 1.0± 0.00 77.81± 0.07 184.65± 67.84
10 6.54± 0.08 23.2± 0.09 1.0± 0.00 385.42± 39.61 157.82± 39.61
20 6.59± 0.10 23.1± 0.08 1.0± 0.00 793.11± 55.28 93.11± 35.28



4.5 Case Study: USCensus 47

Table 4.5: Gradual Drift Detection

Slope Time (s) Memory (Mb) TP Rate (%) FP Delay

250 6.52± 0.14 23.1± 0.03 1.0± 0.00 174.29± 53.11 98.35± 78.25
500 6.82± 0.18 23.2± 0.07 1.0± 0.00 482.36± 42.83 164.70± 69.83
1000 7.01± 0.22 23.1± 0.03 1.0± 0.00 853.16± 107.28 218.65± 109.62

4.5 Case Study: USCensus

This dataset is transformed from the US Census 1990 dataset, obtained from UCI Machine

Learning Repository [13, 12], where 1,000,000 instances were transformed to transactions,

and where there are 396 distinct items. Figure 4.1 shows the normalised item frequency

distribution of the USCensus dataset. When we compared the distribution of the USCen-

sus dataset, to other commonly used data mining datasets, we observed that the USCensus

dataset is much more sparse in nature compared to the other real-world datasets we used

to perform experiments, but more dense than datasets like Kosarak. Because of its spar-

sity, it is interesting to see how this could potentially affect the Self-Sufficient itemset

mining process.

Figure 4.1: Normalised item frequency distribution

4.5.1 Runtime and Memory Performance

We ran USCensus on BSC and SSIG separately to record the time and memory used for

each component of our technique. Table 4.6 illustrates that for a very sparse dataset like

USCensus, BSC with SSIG may need a longer time to divide batches but the difference

before and after adding BSC is not very significant.
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Table 4.6: Runtime and Memory Performance for USCensus

Dataset
BSC SSIG without batches

Time (s) Memory (Mb) Time (s) Memory (Mb)

USCensus 32.81± 0.94 654.27± 3.11 32.25± 1.63 584.74± 1.16

Dataset
SSIG with fixed intervals SSIG with batches
Time (s) Memory (Mb) Time (s) Memory (Mb)

USCensus 33.71± 1.22 661.32± 0.51 33.25± 0.43 659.10± 0.44

4.5.2 Experiments to Evaluate Precision and Recall

Same as we discussed before, the results came out from BSC are guaranteed to be frequent

which guarantees a 100% precision. Because most of the items in USCensus are infrequent

with a less than 0.1 frequency, the recall of BSC performs well - very frequent items are

easy to be found.

BSC provides specific calculations on the distribution change points for frequent items

which directly help SSIG with the Self-Sufficient itemset mining process. According to

4.7, these properly divided batches of USCensus achieved a much better precision and

recall values for Self-Sufficient itemset mining comparing to the ground truth (SSIG with

fixed intervals).

Table 4.7: Precision and Recall for USCensus

Dataset
BSC SSIG with fixed intervals SSIG with batches

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

USCensus 100% 97% 92% 95% 96% 98%

4.6 Conclusion

In this section I conducted several experiments to test the performance of ASSIM by

comparing the runtime and memory use, precision and recall rates and drift detection

accuracy. From the runtime and memory experiments, I concluded that there is no sig-

nificant difference between the time and memory consumption between with or without

using Batch Size Calculator, which shows ASSIM does not requires extra computation

cost. I then evaluated the precision and recall rates, data stream with correctly divided

batches achieved better precision and recall values for Self-Sufficient itemset mining than

using no ASSIM. Finally, I tested our regional drift detector which also achieved promising
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results. My case study on US Census data also showed similar results as before, proved

that ASSIM works as a stable and workable framework.
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5
Conclusion

In this dissertation, we first comprehensively reviewed the pure “support-confidence”

framework for pattern mining and proposed a novel solution - self-sufficient itemsets.

Then, we highlighted the deficiencies of the current methods. Against the shortage of

current methods, we proposed Adaptive Self-Sufficient Itemset Miner (ASSIM) which

makes self-sufficient itemset miner work in an online mode along with a drift detector to

reduce the error brought by the non-stationary distributions. ASSIM includes a Batch Size

Calculator to calculate the size of the batches, Self-Sufficient Itemset Generator to mine

Self-Sufficient itemsets and Regional Concept Drift Adaptor to detect regional concept

drifts.

Experiments demonstrated that the Batch Size Calculator provides more accurate

results without substantially increasing time or memory consumption. This proves that

our technique ASSIM could achieve a better result as compared to using the Self-Sufficient

itemset miners in a static way.

In this final chapter we summarise our fndings and results presented in the dissertation,

and discuss future directions for our research.

5.1 Achievements

The following list highlights the major achievements of this project:

• We proposed a new framework ASSIM that is able to mine self-sufficient itemset
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from unlabelled item-based transactional data streams.

• We presented a new approach that enables the detection of self-sufficient itemset

drifts from unlabelled item-based transactional data streams.

• We proposed a new regional drift detector that detects and adapts regional drifts

in self-sufficient itemset mining to the underlying regional concept drifts.

• Through our evaluation, we showed that our design is feasible and improved the

performance of the overall self-sufficient itemset mining and concept drift detection

process by significantly improving precision and recall rates.

5.2 Limitations

This dissertation has presented algorithms and approaches that contribute to solving

problems in change mining for the data stream environment. Despite the contributions,

there are some limitations to the proposed algorithms and approaches.

The first limitation is related to the concept drift detection for self-sufficient itemset

mining. The current methodology works to detect drifts on a single mined self-sufficient

itemset for each round, which can cause extra computational cost and complicate the

process. It might be possible to perform this task on a parallel mode which can run

multiple drift detectors on the same time.

The second limitation is related to the actual online learning. As we discussed before

in Chapter 3, it is possible to adopt a sliding-window model to actual achieve both the

self-sufficient itemset and drift adaption process on a real-time updating data stream.

5.3 Future Directions

There are several future directions for the work this thesis presents. We will first discuss

the future work for each of the individual topics in the chapters followed by broader

general future directions we wish to pursue.

Association Rule Mining We discussed in detail how to find self-sufficient itemsets

from unsupervised data streams in Chapter 3. In the future we intend to investigate

dynamically adapting the k value of our proposed technique based on the feature of data

stream. For example, it is possible that a data stream contains more than 100 self-

sufficient itemsets but the actual association rules needed are only 50. In this case, it is

important to apply a filter on the preparation stage of data stream processing to give k

a tighter bound.
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Regional Drift Mining We proposed a Regional Concept Drift Adaptor (RCDA) to

facilitate the discovery of item association changes of self-sufficient itemsets in Chapter

3. Our future work in this part includes developing a more accurate method for regional

drift adaptor which can retrieve location information related to drifted regions. This

information can then be used to analyse in a wider picture to build a more accurate

adaptive self-sufficient itemset miner that can better handle real-world data streams. We

also want to adapt RCDA on a parallel mode to apply on multiple self-sufficient itemset

on a single round.
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Palamidessi, Lúıs Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors,

Computational Logic — CL 2000, pages 972–986, Berlin, Heidelberg, 2000. Springer

Berlin Heidelberg.

[6] Roberto J. Bayardo and Rakesh Agrawal. Mining the most interesting rules. In

Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 145–154, 1999.

[7] Roberto J. Bayardo, Rakesh Agrawal, and Dimitrios Gunopulos. Constraint-based

rule mining in large, dense databases. Data Mining and Knowledge Discovery,

4(2):217–240, 2000.

55



56 BIBLIOGRAPHY

[8] Albert Bifet and Ricard Gavalda. Learning from time-changing data with adap-

tive windowing. In Proceedings of the 2007 SIAM international conference on data

mining, pages 443–448, 2007.

[9] Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association rules

for product assortment decisions: A case study. In Proceedings of the Fifth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

254–260, 1999.

[10] Chia-Hui Chang and Shi-Hsan Yang. Enhancing swf for incremental association

mining by itemset maintenance. In Kyu-Young Whang, Jongwoo Jeon, Kyuseok

Shim, and Jaideep Srivastava, editors, Advances in Knowledge Discovery and Data

Mining, pages 301–312, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[11] David Wai-Lok Cheung, Jiawei Han, Vincent Ng, and C. Y. Wong. Maintenance of

discovered association rules in large databases: An incremental updating technique.

In Proceedings of the Twelfth International Conference on Data Engineering, ICDE

’96, pages 106–114, Washington, DC, USA, 1996. IEEE Computer Society.

[12] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[13] Dheeru Dua and Efi Karra Taniskidou. Uci machine learning repository, 2017.
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