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Abstract

With the rapid development of the Internet in the past decades, everything around
us started to convert to digital gradually. The recent pandemic of COVID-19 made
everyone realise the importance and convenience of going digital. For example, while
we are staying at home, we can enjoy the masterpieces without leaving the house
by merely browsing websites of popular art exhibitions and museums. However,
there are many challenges in the area, such as the uncompleted online data and the
inadequate online user experience in the museum. To provide users with a more
enjoyable experience, we need to effectively annotate artworks to describe artwork
image or sub-image with its textual attributes automatically. Therefore, this the-
sis targets two tasks: coarse-grained level cross modal retrieval and fine-grained
cross modal retrieval. Recently, there is an interest in finding all potential align-
ments between the image area and the word at the same time using cross attention,
thereby calculating the similarity of the text. This cross attention based work has
also been proved to excel and surpass other techniques in the task of image-text
alignment for natural images. We have adopted this attention-based approach to
conduct these two tasks on two benchmark datasets and achieve acceptable results.
Our presented framework supports annotating artworks in an automatic mode and
provides descriptions between image/sub-image and textual attributes in either a
coarse-grained or fine-grained level.
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Chapter 1

Introduction

1.1 Cross Modal Retrieval

As a part of the millions of internet users who often surf on the internet, we always
“Google”: enter the keywords to be searched to retrieve our desired text information,
which is to retrieve text with text in this case. Sometimes we also upload images on
Google to find similar ones, which refers to using an image to retrieve images. How-
ever, considering the situation when we use textual information to retrieve images
on Google, at this time the type of information we enter and the type of information
obtained is different, known as “cross modal”.

Cross modal retrieval can be understood as finding the relationship between
different modal samples and using a particular modal sample to search for other
modal samples with approximate semantics. For example: use the image to retrieve
the corresponding text, or use the text to retrieve the desired image. Of course,
modals are not limited to images and text, such as voice, physiological signals, and
video can be used as components of cross modal retrieval.

The goal of cross modal retrieval is to calculate the similarity between different
modal data. For a given query sample, retrieve different modal data related to the
query sample. The key challenge lies in the inconsistent representation of different
modalities, making it difficult to directly measure the similarity, that is, the “se-
mantic gap” problem. There are two mainstream cross-modal retrieval methods:
common space learning and cross-modal similarity calculation.

The common space learning method enables a cross modal similarity to be di-
rectly calculated in this space by learning a unified common space for data in dif-
ferent modalities, including methodologies such as classic statistical analysis, deep
learning, graph based reduction, metric, ranking, dictionary learning, cross modal
hashing, and so on.

Unlike learning from common spaces, cross modal similarity calculation does
not learn the common space, but directly calculates the cross modal similarity, for
example, using the nearest neighbour algorithm.

At present, the types of multimedia in cross modal retrieval are usually image,
text, audio, video and sometimes 3D graphics. Most cross modal retrieval models
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1. Introduction

are currently focused on the retrieval between image and text, as well as a small
numbers concentrate on audio and video. On the one hand, almost no databases
are containing all types of modalities; on the other hand, there are “semantic gaps”
in the various forms of different types of modalities.

The “semantic gap” problem is a core challenge faced by cross-modal retrieval:
data in different modalities have different feature representations, and their sim-
ilarity is difficult to measure directly. In order to solve the above predicament,
an intuitive method is to combine the representations across modalities, that is,
to map data in different modalities from their independent representation spaces
into a third-party, shared common space so that the similarities among them can
be measured. Recently, with the great development and broad application of deep
learning, using a common space for different representations based on deep learning
has become a popular topic in related research.

1.2 Motivation

Image-text alignment is a fundamental research topic in the inter-field of computer
vision and natural language processing. This alignment can be used to two down-
stream tasks: image annotation and image search. The topic of image-text alignment
and cross modal retrieval has been widely discussed in the field of natural images.
However, image-text alignment in the cultural heritage domain has not been a lot
exploit yet. It can save the intense labour from annotating the artworks for on-
line digital artwork archives if we can automatically describe an artwork image or
sub-image with its textual attributes. Furthermore, this topic can help to boost
the multi-modal question answering performance in the cultural heritage domain
by providing fine-grained image-text correspondence information [30]. Therefore,
it is interesting to explore the methods that can figure out the artwork image or
sub-image and text correspondence.

While a large number of papers discussed aligning image-text and coarse-grained
modal information retrieval, the fragment level image-text alignment problem has
not been as widely dealt within the multi-modal question-answering research do-
main. Coarse-grained modal information retrieval can retrieve information between
images and sentences. However, it sometimes does not work well on some artwork
datasets, which generally contain some fine-grained patterns and objects in one art-
work image, therefore decrease the effectiveness of the retrieval model. We provide
demonstrations on the difference between these two levels of cross modal retrieval
task in the following section.

1.3 Dataset

The datasets involved in this thesis research are from Sheng et al.’s work [31] which
were originally collected from the following online sources: the Brooklyn Museum
[21], the Metropolitan Museum [22], and the British Museum [20]. Based on these
sources, there are two artwork datasets that we used here: the ancient Egyptian art
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1.3. Dataset

image dataset and the ancient Chinese art image dataset. According to [31], the two
datasets from Sheng et al.’s work were “collected based on the geographical location of
the origin of the artworks because caption words may differ much depending on the
cultural background of the location”. More details of these two datasets are displayed
below in Table 1.1.

Dataset Num. of Artworks Aver. Length Num. of Tokens
Egyptian 16,146 9 10,694
Chinese 6,847 10 4,721

Table 1.1: Statistics of Our Datasets [31]

The datasets have 22,993 ancient artwork images. Images are stored at varying
dpi and the compressed jpeg image file size ranges between 20 to 300 KB. As stated
in [31]: “the paragraph-level descriptions were split into multiple sentences and a
maximum of five sentences are retained for each artwork to reduce data imbalance.
Duplicate images were removed by [31] in the datasets based on their hash code.
Tokens occurring less than two times were removed by the authors from the training
vocabulary.” The datasets were separated into partitions of 80%, 10%, and 10% for
respectively training, validation, and test uses.

Here we focus on ancient Egyptian and Chinese artworks; they consist of 16,146
images from Egyptian domain and 6,847 images in Chinese. Figure 1.1 and Figure
1.2 show three examples of artworks from the Egyptian and Chinese collection with
textual attributes.

1.3.1 Examples of Cross Modal Retrieval under Different Levels

In this section, we look at two simple examples of ancient Egyptian artworks and
how textual description can be retrieved to match its image under two coarse-grained
and fine-grained levels.

Figure 1.3 shows a porcelain cup with green pattern on it. Using a coarse-
grained multi-modal retrieval model, we can retrieve the textual description sen-
tences “Porcelain stem cup with polychrome overglaze enamels”, which is sufficient
for recognising this artwork. However, this retrieved result does not contain more
detailed information such as “there are two men in independent scenes contemplat-
ing the moon in a landscape setting with inverted plantain leaves around the stem
and a further figure inside the cup in a red double ring medallion which is much
worn”.

In the real-world scenarios, there is much more likely for us to encounter an
artwork showing in Figure 1.4. Our traditional coarse-grained multi-modal retrieval
model retrieves “a red and a white pot” for this artwork but it is not detailed and did
not cover sufficient information in the artwork image. Therefore, this motivated us
to propose a fine-grained multi-modal retrieval model which can focus on the frag-
ment level image/sentence retrieval. The description on the image was retrieved by
our fine-grained multi-modal retrieval model, which has significantly more detailed
information.
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female figure
jar with boat design in a
nearby case 
boat design figure with
upraised arms
human noses
source of the breath
paint on the male
dark patch
white paint
human trait
high-status individuals
three figurines
white skirts

fragment of the feet
base of a statue
new development
religious practices
divine image
time nonroyal individuals
hermopolis as the location of
the temple
realistic rendering of each
toe
closer examination of the
sculptor
break in this fragment
attention to the realistic
rendering
arch of the foot

statue of ity-sen
ancient egyptian sculptors
youthful bodies in a limited
numbe
subject with the left common
standing pose
two legs
unobstructed view
most hieroglyphs
two-dimensional
counterparts
three-dimensional
hieroglyphs

Figure 1.1: Examples of Artworks of Egyptian Artwork Dataset

bottle
dragon and cloud
scrolls
made of blue
underglaze porcelain

green dragons among
clouds and waves on
yellow ground
vase
made enamelled
ceramic, porcelain,
engraved

bronze alter vase in the
shape of a zun
decorated with figures and
flowers
with detatchable handles in
the shape of animals

Figure 1.2: Examples of Artworks of Chinese Artwork Dataset

1.4 Research Questions
In this thesis, we study image-text alignment for artworks in coarse and fine-grained
levels. Fine-grained image-text alignment refers to the fragment level cross modal re-
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1.4. Research Questions

Porcelain stem cup with
polychrome overglaze enamels

Figure 1.3: Ancient Egyptian Artwork Example (coarse-grained)

Figure 1.4: Ancient Egyptian Artwork Example (fine-grained)

trieval. The prior sections list the background and motivations, the specific research
questions that we look at are:

• Is the image-text alignment model experimented on natural images effective
for artwork datasets?

• Can coarse-grained cross modal retrieval model be adapted to fine-grained
retrieval and how?

1.4.1 Cross Modal Retrieval Framework

As mentioned above, our primary research task here is to achieve cross modal re-
trieval (i.e. between image and text) for artworks. Figure 1.5 illustrates a brief
working framework for the tasks in a fine-grained level.
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......

Noun-phrase composed 
sentence (unknown)

Image fragments (known)

... ...

Image fragments (known)

Noun-phrase composed
sentence (known)

... ...

...

Noun-phrase composed 
sentence (known)

Image fragments
(unknown)

... ...

... ...

Multimodal
Machine Learning

Model

Training data
Image fragments with aligned texts

in noun-phrase composed sentences

...

Testing data
Image fragments to unaligned texts
in noun-phrase composed sentences

Testing data
Texts in noun-phrase composed sentences

to unaligned image fragments

Figure 1.5: Cross Modal Retrieval Process (fine-grained)

We train our multi-modal machine learning model on the known image features
and corresponding textual attributes; this training process helps us learn the po-
tential relationships between image and text. This trained model will be used to
retrieve textual attributes from known image features and vice versa. We believe
this may help with automating the artwork annotation process and significantly save
labours on manually annotating artwork information.

1.5 Contributions

The main contributions made by this thesis are:

1. We review work from several disciplines which may be of relevance to the
present subject of inquiry and provide commentary on how the findings from
these disciplines may be useful. (Section 2)

2. We adopted SCAN [15] as the coarse-grained cross modal retrieval model,
analysed its structure and applied it on our proposed Egyptian and Chinese
artworks datasets to achieve the image-text alignment. By employing this
model, we are able to have a coarse-grained alignment between artworks image
and textual attributes. This lays the foundation our novel task of fine-grained
cross modal retrieval for artwork items. (Section 3)

3. By focusing on fragment level image features and textual attributes instead of
feeding the whole images and sentences, we are able to perform cross modal
retrieval in a more fine-grained level. This allows the future multi-modal re-
trieval tasks on artworks to achieve more detailed results. (Section 4)
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1.6 Structure of Thesis
This thesis is structured into the following chapters:

• Chapter 1 Introduction
We provide the reader with a relevant background to understand this thesis.

• Chapter 2 Related Works
We introduce relevant research in image recognition, deep learning, object de-
tection, natural language processing and image-text alignment. In particular,
we detail seminal research and review the overall state of the current research.
We also review the difference in the works pertaining to the traditional visual-
semantic alignment technique versus the more recent cross attention image-
text alignment framework.

• Chapter 3 Coarse-grained Cross Modal Retrieval
We introduce our coarse-grained cross-modal retrieval modal - SCAN, discuss
how its components interact with each other and explain how SCAN uses cross
attention to improve image-text alignment. We also show the preliminary
result running SCAN on our ancient Egyptian and Chinese artwork datasets.

• Chapter 4 Fine-grained Cross Modal Retrieval
We proposed our novel fine-grained cross modal retrieval model, which now
focus more on the fragment level image-text alignment. We then perform
several experiments on evaluating the effectiveness of our image generation
from text and vice versa by the recall. We also point out the direction of
possible future improvements by discussing several recent related publications.

• Chapter 5 Conclusion
We conclude the work and add some final reflections and remarks.
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Chapter 2

Related Works

Image-text alignment is a fundamental research topic in the inter-field of computer
vision and natural language processing. There are many approaches proposed to
associate images with textual attributes or vice versa. However, the fielded applica-
tions on bidirectional image sentence mapping appear to be relatively few, especially
for multi-modal question answering.

It has been suggested that this is due to the intense labour has been paid on
annotating artworks for online digital artwork archives, automated image or sub-
image with its textual attributes description could significantly improve the payoff.
In this chapter we will survey and summarise the literature of image-text alignment
and some proposed applications on multi-modal question answering.

The structure of this chapter is as follows. Section 2.1 discusses the history and
some basic knowledge of image recognition. Section 2.2 discusses the preliminaries
on deep learning and some mainstream object detection techniques. Section 2.3
explains the definition of image-text alignment and related proposed solutions on
that task. Section 2.4 summarises this section.

2.1 Image Recognition

The history of research on image recognition stems from the 1960s when Marvin
Minsky, also known as “the father of Artificial Intelligence” asked his student Gerald
Sussman to “connect a camera to a computer and do something with it” [13]. But
with minimal resource, this topic did not get enough attention at first.

2.1.1 Early Researches on Image Recognition

After entering 1970s, the advent of modern electronic computers gives computers
a chance to try to answer what they see through images. Researchers first tried
to learn from the same way human look at things. It was generally believed that
humans could see and understand things because they could observe things in 3-
D with two eyes, which now seems rather absurd. Therefore, researchers believed
that for a computer to understand the image it sees, it must first recover the three-
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dimensional structure of the object from its two-dimensional image. This is the
so-called “three-dimensional reconstruction” method.

Another inspiration is that it was believed that people could recognise an object,
for instance: an apple because people already have a priori knowledge: “Apples are
red, round, and smooth”. If a machine was also established with such a knowledge
base, then it could match the images with its knowledge base, and potentially com-
prehend what it sees corresponding to what it already knew. This is the so-called
“a priori knowledge base” method. However, this method can only extract very few
basic features, which is not very practical.

By the 1990s, image processing hardware technology had made huge progress.
Meanwhile, researchers began to design different algorithms: introduction of statisti-
cal methods and local feature descriptors, which led to more significant development
of computer vision technology and started to be widely used in the industries. In
the “a priori knowledge base” method, the shape, colour, surface texture, and other
characteristics of objects are affected by the viewing angle and the observation envi-
ronment, and they will change under different angles, different lights, and different
occlusions. To solve that dilemma, the proposed new method judges things through
identification of local features, and establish a local feature index on objects, which
can be more accurately matched even if the perspective or observation environment
changes.

After entering the 21st century, computer vision develops rapidly thanks to the
massive data brought by the rise of the Internet, the advent of digital cameras,
and the widespread application of machine learning methods. In the past, many
rule-based processing methods have been replaced by machine learning: machines
automatically summarise the characteristics of objects from massive data then iden-
tify and classify. Many applications are emerging at this stage, including camera
face identification, security face recognition and license plate recognition, etc. The
accumulation of data has also produced many evaluation data-sets, such as official
face recognition and face comparison recognition platforms: FDDB and LFW. One
of the most famous ones is ImageNet [6], which contains 14 million labelled images
divided into tens of thousands of categories.

2.1.2 Image Recognition with Neural Networks

After 2010, with the power of deep learning, computer vision technology has experi-
enced explosive growth and industrialisation. With the adoption of neural networks,
image recognition tasks can be achieved much more efficient and accurate. Figure
2.1. below gives us a straightforward illustration of how neural networks help with
image recognition.

Next, we introduce deep neural networks and how neural networks can be adopted
to solve object detection tasks, which is the core part of our project.

10
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Figure 2.1: How Neural Networks Performs an Image Recognition Task [26]

2.2 Deep Learning and Object Detection

Through deep neural networks, the accuracy of various types of visual recognition
tasks has been dramatically improved. In the well-known computer vision competi-
tion ILSVR, the error rate of thousands of object recognition was as high as 25.8% in
2011. After the introduction of deep learning in 2012, the error rates in the following
four years reached 16.4%, 11.7%, and 6.7%, 3.7%, with significant breakthroughs.
Now, face recognition can even achieve a false positive rate of less than one over a
million.

Now we know that deep learning has several advantages on image processing
and always surpasses other mainstream techniques. But what is deep learning? The
following paragraphs give a brief idea of deep learning and how it works.

2.2.1 Deep Learning

In real life, human beings can often solve many problems by intuition. For example,
when a human sees Figure 2.2. below, he or she can immediately know that there
is a cat and a dog in the picture.

11
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Figure 2.2: Image of a Cat and a Dog

This may feel a natural task for human, but think about how do human know
that there are a cat and a dog, but not two cats or two dogs instead? As human
can differentiate these two from the picture at a glance, let’s try to describe the
appearance of cats and dogs. Taking the above picture as an example, we can
describe the morphological characteristics of cats as follows: it has a round head,
wide cheeks, wide ear roots, deep auricles, and rounded parts at the tip. For the
dog in the picture above, its head is flat and wide; the ears are small and thin, the
tips of the ears are slightly rounded, the dark apricot eyes, and short hair. Words
“broad cheeks” and “round ear tips” often apply to cats and dogs, while the length
of short hair and round ears cannot be quantified with a specific number. When
we try to adopt a more specific description like “dark apricot eyes”, a new problem
arises: not all breeds of dogs have such characteristics, but we can still recognise
them quickly at a glance.

In short, it is challenging to distinguish cats and dogs accurately with a few words
or sentences, but this problem is often solved quickly and accurately by intuition.
To solve these seemingly intuitive problems on computers, it is difficult to describe
them with specific language or mathematical rules. This brought the invention of
deep learning.

Deep learning is to let computers simulate human cognitive processes and learn
from experience (also as known as “intuition”). Make computers understand tasks
using a hierarchical concept system like human while each concept is defined by
some relatively more straightforward concepts: building simpler concepts to learn
complex concepts. The word “deep” means more layers of learning system.

Deep learning has a long and rich history. With the increasing amount of avail-
able training data and the continuous improvement of computer software and hard-
ware, the scale of deep learning models has also increased to solve increasingly
complex application problems, and the accuracy has continued to increase.

2.2.2 Image Understanding

How to retrieve information out from images that can be understood by a computer
has always been the most discussed field of computer vision. Deep learning model
have become a popular research area due to its powerful representation capabilities,
coupled with the accumulation of data and advances in computing power.
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But how to understand an image? There are three main levels according to the
needs of subsequent tasks: classification, detection and segmentation. Figure 2.3.
below provides an example how image understanding tasks can be performed [25].

Figure 2.3: Three Steps of Image Understanding [25]

Classification

Classification is the first task, is to structure an image into information of a certain
category then describe it by a predetermined category (string) or instance ID. Clas-
sification task is the simplest and most basic image understanding task, and it is also
the first task for deep learning models to achieve breakthroughs and achieve large-
scale applications. In the application field, face recognition and scene recognition
can be classified as classification tasks.

Detection

The classification task provides a description of the content of an entire image, while
the detection process concentrates on a specific targeting object, which requires the
categorical and position information of the target to be obtained together. Compar-
ing to the classification task, detection task illustrates an idea of both foreground
and background of the image. To perform detection task, we need to distinguish the
desired targets from the general background and identify its description, i.e. type
and location of this target. Therefore, the output of this detection model should be
a list, each item of this list provides the type and location of this detected target,
which is commonly represented by the coordinates of a rectangular detection frame.

Segmentation

Segmentation includes semantic segmentation and instance segmentation. The for-
mer is an extension of the previous background separation and requires the sepa-
ration of image parts with different semantics, while the latter is an extension of
the detection task and requires the outline of the target which is finer than the
detection frame. Segmentation is a pixel-level description of an image. It provides
meaning behind each pixel type, such as the segmentation of roads and non-roads
in driver-less driving technology.
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2.2.3 Object Detection

After familiarised the steps of image understanding, in this section we focus on the
second task: object detection, which is also the main task of our proposed work.
The following paragraph will provide several mainstream models on solving object
detection tasks.

CNN

First we start with introducing a series of commonly used models called convolutional
neural networks (CNN).

Convolution Process The convolution process is based on a small matrix, that
is, a convolution kernel. The pixel matrix of each layer mentioned above is con-
tinuously scanned in steps, the scanned number is multiplied by the number of the
corresponding position of the convolution kernel, and then the sum is calculated.
Each time you scan, you get a value, and after all the scans, a new matrix is gen-
erated. The following Figure 2.4 illustrates an example of convolution process in a
CNN model:

Figure 2.4: Example of Convolution Process [24]

How to determine the number of convolution layers? Normally we take a small
matrix of (3, 3). Each value in the convolution kernel is the neuron parameter
(i.e. weight) that we need to find (i.e. train). At the beginning, there will be
an initial value randomly. When training the network, the network will pass after
These parameter values are continuously updated to the propagation until the best
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parameter value is found. But how do we know which is the “best”, this is evaluated
by a loss function.

The step size of the convolution kernel refers to the movement of the convolution
kernel by several grids at a time, with horizontal and vertical directions.

The convolution operation is equivalent to feature extraction, and the convolu-
tion kernel is equivalent to a filter to extract the features we need.

Padding After the convolution operation, the dimensions become smaller, and the
resulting matrix is smaller than the original matrix, which is difficult to calculate
and hard to perform convolution, thus, we need padding.

Before each convolution operation, we need to wrap a layer of 0 outside the
original matrix. It is possible to only fill in horizontally, or only vertically, or 0 on
all sides, so that after convolution, the size of output image will be consistent with
input image. Figure 2.5 below illustrates an example of padding zeros to an image.

Figure 2.5: Example of Zero-padding Added to Image [5]

Pooling After the convolution operation, we extracted a lot of feature information.
Adjacent areas have similar feature information and can be replaced with each other.
If all these feature information are retained, there will be information redundancy,
which increases the computational difficulty. At this time, pooling is equivalent to
a dimension reducing operation.

Pooling happens in a small matrix area. The maximum or average value of the
area will be used to replace the area. The size of the small matrix can be set when
the network is built. This small matrix scans from the upper left corner to the lower
right corner to perform pooling.

Figure 2.6: Example of Max-pooling [5]

15



2. Related Works

Fully Connected Layer For layers n − 1 and n, any node in layer n − 1 is
connected to all nodes in layer n. That is, when each node of the n-th layer performs
calculations, the input of the activation function is the weight of all nodes of the
n − 1 layer. The middle layer like below is fully connected.

Figure 2.7: Example of Fully Connected Layer

VGG16

VGG16 [33] is a deep network model developed by the computer vision team of Oxford
University and researchers at Google DeepMind in 2014. The network has a total of
16 training parameters. The VGG16 network won the second place in the ILSVRC
2014 competition classification project and the first place in the positioning project,
which proved its asset and made it a very commonly used model in the field of CNN.

Configuration VGG has a relatively simple structure, and its generalisation per-
formance of migrating to other image also achieves well. VGG is still often used to
extract image features.

Conforming to the different sizes of the convolution kernel and numbers of con-
volution layers in a VGG model, there are six different ConvNet configurations: A,
A-LRN, B, C, D, and E, where D and E are more commonly discussed, named VGG16
and VGG19 respectively. Figure 2.8 displays the six different structural configura-
tions of VGG. In Figure 2.8, each column corresponds to a structural configuration.
For example, section D in the figure indicates the structure adopted by VGG16.

VGG16 contains the following components:

• 13 convolutional layers (conv3-XXX)

• 3 fully connected layers(FC-XXXX)

• 5 max-pooling layers (maxpool)
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Figure 2.8: ConvNet Configuration of VGG [33]

Among these different layers, the convolutional layer and the fully connected
layer have weight coefficients, so they are often named weighted layers. The total
number of weighted layers is 13 + 3 = 16, which represents the digit “16” in the
name of VGG16 model. (The pooling layer does not involve weights, which means
pooling layers were excluded for counting).

Structure and Features The outstanding feature of VGG16 is simplicity, which
is reflected in:

• All the convolutional layers use the identical convolution kernel parameters.

• conv3-XXX represents convolution layers, where conv3 indicates that the size
of the convolution kernel is 3, that is, the width and height are both 3. And
3 × 3 is very small kernel size, combined with other parameters: stride = 1,
padding = same, so that each convolutional layer (tensor) can maintain the
same width and high. XXX represents the number of channels of the convolu-
tional layer.

• The pooling layer uses the same pooling kernel parameters.
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• VGG16 is constructed with several stacked convolutional layers and pooling
layers, which makes it fairly easy to build a deep network structure (considering
that back to 2014, sixteen layers were considered very deep).

Based on the above explanations, VGG16 becomes popular and surpasses many
other models because of its small filters and deeper network architecture.

Figure 2.9 illustrates the overall structure of VGG16. From left to right, a coloured
picture is the input to the network. The white box is the convolution layer, the
red is the pooling, the blue is the fully connected layer, and the brown box is the
prediction layer. The role of the prediction layer is to convert the information output
from the fully connected layer into the corresponding class probability, and play a
classification role.

Figure 2.9: General Structure of VGG16 Model [33]

Block Structure The convolutional layer and pooling layer of VGG16 are divided
into different blocks on the right side of Figure 2.9. These blocks are labelled Block1
to block5 from front to back. Each block includes a few convolutional layers and a
pooling layer. For example: Block4 contains:

• 3 convolutional layers: conv3-512

• 1 pooling layer: maxpool

And in the same block, the number of channels of the convolutional layer is the
same, for example:

• block2 contains 2 convolutional layers, each of which is represented by conv3-128,
that is, the convolution kernel is: 3 × 3 × 3, the number of channels is 128
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• block3 contains 3 convolution layers, each convolution layer is represented by
conv3-256, that is, the convolution kernel is: 3×3×3, the number of channels
is 256

The structure of VGG16 divided by blocks is given below in Figure 2.10.

Figure 2.10: Structure of VGG16 Model by Blocks [33]

The input image of VGG is 224 × 224 × 3:

• The number of channels doubles, from 64 to 128 in order, and then to 256,
until 512 remains the same and no longer doubles

• Height and width change halved from 224 → 112 → 56 → 28 → 14 → 7

2-stage Model

The 2-stage model is named for its 2-stage processing of pictures, also known as the
region-based method. Here we choose the R-CNN series work as a representative of
2-stage model, which is also the model we adopted for this project.

R-CNN

Traditional computer vision methods often use well-designed manual features, such
as SIFT and HOG to describe images, while deep learning methods advocate the
acquisition of features. From the experience of image classification tasks, the effects
obtained by the CNN network automatically acquired features has exceeded the
characteristics of manual design. Girshick et al. [9] applied convolutional networks
in local areas to give convolutional networks ability to learn high-quality features.

R-CNN achieves object detection in two stages. The first is to propose a few
regions of interest which may have potential objects, that is, the local cropping of
the image, named the step of “Region Proposal” [9]. The paper [9] used selective
search algorithm to run the SOTA performing classification network, i.e. AlexNet in
many cases, and then obtained the types of objects in each region. A basic structure
of R-CNN is illustrated below as Figure 2.11.

The proposal of R-CNN has two significant contributions: first, CNN can be used
for region-based localisation and segmentation of objects; second, when the number
of supervised training samples is scarce, pre-trained models on additional data are
able to obtain excellent results after fine-tuning. The first contribution motivated
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Figure 2.11: Structure of R-CNN [9]

almost all 2-stage methods, and the second contribution used the model trained in
the classification task (Imagenet [6]) as the base network. The fine-tuning method
for detecting problems has also been used widely in the subsequent works.

The idea of R-CNN is straightforward, the original detection task is transformed
into a classification task based on the region, which is a test of the deep learning
method on the detection task. There are also many issues with the model itself, for
example there are three different models needs to be trained: proposal, classification,
regression and also performance drawbacks triggered by redundant calculations. But
generally R-CNN can be considered as the pioneer in the field.

Fast R-CNN

In 2015 Girshick [8] pointed out the reason why R-CNN is time-consuming is that
CNN is performed separately on each Proposal. Without sharing calculations, it is
proposed that after the basic network is run on the entire picture, it is introduced
into the R-CNN sub-network, sharing the large Partially calculated, hence the name
“Fast”.

Figure 2.12: Structure of Fast R-CNN [8]

Figure 2.12 above shows the architecture of Fast R-CNN. A feature map is
obtained from the feature extractor, at the same time, a Selective Search algorithm
is run on the original image and the RoI i.e. Region of Interest, a coordinate group
that can be mixed with region proposal is mapped to the feature map. Then RoI
Pooling is performed for each RoI, this operation obtains feature vectors of equal
length, then sorts the obtained feature vectors into positive and negative samples
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when maintains a certain ratio of positive and negative samples. Next fast R-
CNN batches them into the parallel R-CNN sub-network, performs classification
and regression at the same time and unify both losses.

This structure of Fast R-CNN is exactly the prototype of the meta-structure
adopted by the mainstream two-stage method for detection tasks. According to the
original paper, “fast R-CNN [8] unifies proposal, feature extractor, object classifi-
cation and localisation in a whole structure, and improves the efficiency of feature
utilisation through shared convolution calculations”, which acts as the biggest con-
tribution.

Faster R-CNN

Faster R-CNN [28] lays the foundation of the two-stage method. Its proposed novel
RPN network replaces the classic selective search algorithm to achieve the detection
task end-to-end based on a neural network. Generally speaking, Faster R-CNN
is a combination of RPN plus a Fast R-CNN, sharing most of the characteristics
of convolution calculation with RCNN significantly reduced the calculation task
brought by RPN, which means “Faster R-CNN is able to run at 5fps on a single
GPU and reaches SOTA in terms of accuracy” [28].

The main contribution of Faster R-CNN [28] is the creation of Regional Proposal
Networks to replace the previous SS algorithm. RPN network models the task of
Proposal to the problem of binary classification: whether it is an object. Figure 2.13
below illustrate the basic structure of Faster R-CNN [28].

Figure 2.13: Structure of Faster R-CNN [28]

The first step is to generate anchor boxes with various size and aspect ratio on a
sliding window (as shown in the right part of Figure 2.13), give IoU a predetermined
threshold, label anchor box as positive or negative corresponding to the Ground
Truth. Thus, the input samples to RPN is organised into anchor box (coordinates)
of each anchor box and whether this anchor box has an object or not (binary label).
RPN network maps each sample to four coordinate values and a probability value
which corresponds the probability of there is an object in the anchor box, values for
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the four coordinates define the position of the object. Finally, combine the loss of
binary and coordinate regression, as the target of training RPN network.

Faster R-CNN completed the “deep” part of the inspection tasks using RPN
network. The idea of using a sliding window to generate anchor box is also widely
adopted such as in YOLO v2, etc.

2.3 Image-text Alignment

Image-text matching and visual question answering (VQA) are the frontiers of image
and text multi modal fusion. The former needs to map images and texts to the same
semantic space, and then judge their similarity by distance; the latter needs to find
suitable answers in all candidate sets.

2.3.1 Convolutional Neural Network Architectures for Matching
Natural Language Sentences

This paper [14] is a common method for text processing used in Image-Text Matching
tasks, which is equivalent to a classic work of natural language processing.

The core idea is to apply the convolution operation to text. The problem to be
solved in this article is the matching between Text.

Text Convolutional

First of all, we explain the convolution operation of the text. After the discrete text
information: embedding is done, the continuous features of the text will be obtained,
that is, a word can be represented by a vector. At this time, it is very similar to
process an image. A word is equivalent to one pixel in an image, and a sentence is
composed of several such words. In a specific implementation, the feature dimension
of Embedding can be equivalent to the number of channels in the image, so that the
words are connected end to end, and an image with a length of 1 × N (the number
of text words) is finally formed. At this time, a convolutional network of text can
be implemented.

Images can be resized to the same size by linear transformation methods, but
text cannot, so the convolution of the text generally uses a Gated Convolutional
Layer, that is, for sentences of insufficient length, it is forced to zero, as shown
below in Figure 2.14:

Another point to note is that Maxpooling will be selected as the pooling method
for general text so that local features can be maximised accordingly.

Architecture

This paper proposed two network structures. One is the matching post-fusion tech-
nology, that is, to obtain their vector representation through CNN in two texts to
be matched, and then perform stitching and add several layers of full connections
to predict the final match.
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Figure 2.14: Structure of Convolutional Sentence Model [14]

The network structure of Arc-I is shown in the Figure 2.15:

Figure 2.15: Arc-I for matching two sentences [14]

It can be seen from the figure that its feature processing method of encoding
belongs to the post-fusion of features, and is very naive. In such a network model,
the author did not consider the correlation between different sentences and the
order of words, that is, the model mapped the two sentences into a semantic space
involuntarily. In order to solve this problem, the author developed a second method:

The network structure of Arc-II is shown in the Figure 2.16:
This model combined all the word positions of the two sentences, and each

position was expressed by the following formula:

ẑ(0)
i,j =

[
x⊤

i:i+k1−1, y⊤
j:j+k1−1

]⊤
x and y respectively represent the sentence to be matched. According to the

above formula, the two sentences will form a square FM1. Each position of FM1
is composed of 2k1 vectors. That is, this is actually a 4-dimensional structure
[#Sentence * #Sentence * 6 * #Embd_size]. A one-dimensional convolution us-
ing the latter two dimensions will form a three-dimensional feature map of layer-2.
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Figure 2.16: Arc-II of convolutional matching model [14]

Then the network structure behind is the common model in the image.

Summary

• The convolutional network processes text data and introduces location infor-
mation into the convolutional network to form a 3d feature map. Gated Con-
volution, to ensure that the gradient will not be affected when the sentence is
not long enough.

• MaxPooling guarantees maximum response of local features.

2.3.2 m-CNNs

This work [19] needs to solve the problem of image and text matching. There is not
much innovation in image features, that is, features extracted by CNN networks.
Different from his previous work, it fuses image features with text features and
directly inputs them to the convolutional network for matching. m-CNNs also pays
attention to text information with different granularities.

The way m-CNNs deals with features is by directly concatenating the features.

Word-level Matching CNN

The finest-grained matching problem. The network structure is as follows:
The calculation formula is as follows:

ν⃗i
(0)

def= νi
wd

∥∥∥νi+1
wd

∥∥∥ · · ·
∥∥∥νi+krp−1

wd

∥∥∥ νim

Phase-level Matching CNN

Word granularity matching, the network structure is as follows:
The calculation formula is as follows:

ν⃗i
ph

def= νi
ph

∥∥∥νi+1
ph

∥∥∥ · · ·
∥∥∥νi+krp−1

ph

∥∥∥ νim
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Figure 2.17: The word-level matching CNN. [19]

Figure 2.18: The phrase-level matching CNN and composed phrases. [19]

Phrase-level matching CNN is similar to word, except that the position is differ-
ent. The author uses two different granularity phrases in the text, one is two words
and one is four words.

A very useful concept in this is the receptive field, which means that a neuron
is calculated from a few words. This concept is the same as the concept of the
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receptive field in an image.

Sentence-level Matching CNN

For sentence level matching, the network structure is as follows:

Figure 2.19: The sentence-level matching CNN and composed phrases. [19]

Sentence level matching used the last feature for stitching.
From the result, it can be seen that the final ensemble effect is the best, but the

performance of the single model is about average.

2.3.3 Dual-Path Convolutional Image-Text Embedding

The problem to be solved in this work [40] is also the problem of image and text
matching. Unlike the previous two works, it does not use front fusion (generally, the
effect of front fusion is better than post fusion). But some interesting ideas were
introduced.

Architecture

The merit of this network structure is the introduction of residual in text’s encoder,
which solves the problem of matching images and texts after fusion.

Loss function

Instance loss was widely discussed in the loss function. The so-called instance loss
is the task of doing graphic and text matching. Each pair is used as an instance,
and then a softmax classifier is used to learn the loss function.

The idea is to adapt the algorithm to the data, that is, to convert the matching
problem into a classification problem.

This kind of transformation risk is quite large because our query is diverse; we
can never exhaust all query and image pairs, so the basic idea is to achieve it on a
multitasking basis.

Before explain multitask loss, we firstly focus on the ranking loss.
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Figure 2.20: Architecture of 2 Convolutional Neural Networks [40]

The general definition of ranking loss is as follows:

l (xn, ypos, yneg) = max (0, µ − S (xn, ypos) + S (xn, yneg))

S is the similarity calculation function, and µ is the minimum margin in which
the similarity needs to be guaranteed. Such ranking loss only considers the loss of x
as the matching object, but does not consider y. Since x and y are a pair, a two-way
loss is required.

Based on this problem, the author proposes the following Ranking loss loss func-
tion:

Lrank = max (0, α − D (Ia, Ta) + D (Ia, Tn)) + max (0, α − D (Ta, Ia) + D (Ta, In))

The front part is Ranking Loss of Image, and the back part is Ranking Loss of
Text.

So the final author’s loss consists of a total of 3 parts, namely Ranking loss,
visual Instance loss, and text Instance loss.

L = λ1Lrank + λ2Lvisual + λ3Ltextual

where λ1, λ2, λ3 are predefined weights for different losses.

Some Interesting Tricks

This work contains many interesting tricks to achieve better results which we will
point out as follows.

1. Embedding models initialised with word2vec are better than random initiali-
sation.

2. Sentence jittering, the model randomly adds a certain amount of zero padding
to the beginning and end of the sentence.
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3. Instance loss finally shares a same weight parameter to ensure that the infor-
mation of two different modalities is mapped to the same space.

Two stage training is also the highlight of this article:

• Stage-I. At this stage, text residual network is firstly trained. Then it fixes the
ranking loss and image in CNN models, so that the CNN of text can be trained.
The reason of doing this is the network of text was randomly initialised. To
add ranking loss because the image and text are definitely not in the same
semantic space at the beginning, we are worried that this loss will be brought
into the network of text. Fixing the image CNN because we do not want the
gradient of the image and the gradient of the text to interfere with each other.

• Stage-II, when text’s CNN training converges, adding ranking loss and image
CNN to the model, and training end-to-end together, the final result is the
best.

2.3.4 DANs

The main research contribution of DAN [23] is to introduce attention mechanism
into neural network model. The starting point is relatively obvious: the ultimate
problem of image and text matching is the matching problem between the entire
text and the entire Image, however, this problem is more challenging to solve, so a
basic solution is to split the tasks. Text is composed of different words, while image
is composed of different regions. If we can match the words of text to the regions of
image, this problem will become simpler.

The basic idea is to use the attention mechanism to match text words with
image regions in the network automatically. The author cites two types of attention
mechanisms: visual attention and text attention.

Both types of attention used the previous state and determine the “position” of
attention for the next state.

Visual Attention

The formula for visual attention is:

h(k)
v,n = tanh

(
W(k)

v vn

)
⊙ tanh

(
W(k)

v,mm(k−1)
v

)
α

(k)
v,n = softmax

(
W(k)

v,hh(k)
v,n

)

v(k) = tanh
(

P(k)
N∑

n=1
α

(k)
v,nvn

)

All W in the formula are parameters that the network needs to learn, h is the
hidden state, and m is the memory vector.
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Textual Attention

The formula for textual attention is:

h(k)
u,t = tanh

(
W(k)

u ut

)
⊙ tanh

(
W(k)

u,mm(k−1)
u

)
α

(k)
u,t = softmax

(
W(k)

u,hh(k)
u,t

)
u(k) =

∑
t

α
(k)
u,tut

The step size K of the two Attentions is a super parameter, and the author
proves that K = 2 is the best in experiments.

Visual and Textual Representation

The visual features use the features of the second layer of Resnet or VGG, and the
text features use the features of bidirectional RNN (LSTM). The visual features are
shown in the following Figure ??:

Figure 2.21: Bidirectional LSTMs for text encoding [23]

VQA and Image-Text Matching

This research solved two different problems which both used the previous attention
mechanism. However, the methods of applying attention are different.

Visual Question and Answer In the VQA dataset, all the answers are one
single word, so in essence, this problem is a classification problem, that is, we need
to know which one of the answer sets the question is in the end.

The network structure diagram is displayed as follows in Figure 2.22:
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Figure 2.22: r-DAN in case of K = 2 [23]

As can be seen from the figure, it uses the last memory vector for classification.
The memory vector calculation formula is as follows:

m(k) = m(k−1) + v(k) ⊙ u(k)

The initialisation of different parameters is as follows:

m(0) = v(0) ⊙ u(0)

where

v(0) = tanh
(

P(0) 1
N

∑
n

vn

)

u(0) = 1
T

∑
t

ut

Because it is an image question answering task, it is necessary to fuse the text
features with the image features at each Attention step, and finally output them.
According to the last fused features, a softmax classifier is sufficient.

Image-Text Matching The biggest difference between the image and text match-
ing problem and VQA is solving a ranking problem, so we needs to compare the
distance between the two features, so we cannot share the same memory vector.

Corresponding image and text have their own memory vector, their calculation
formula is as follows:

m(k)
v = m(k−1)

v + v(k)

m(k)
u = m(k−1)

u + u(k)
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The network structure is shown as follows in Figure ??:

Figure 2.23: m-DAN in case of K = 2 [23]

In the final experiment, the author used the same Ranking Loss as in the previous
work. One difference is that each step of Attention will generate a matching vector.
What is done here is to add all S.

2.3.5 Summary of Image-Text Alignment Related Works

Throughout these papers, all models are dealing with graphic and text fusion, that
is, multi-modal fusion. One of his most basic starting points is that the encoder
models for text and images must be good enough, which is the first one, convolution
in the article (it seems that Recurrent neural network can also be used).

With an excellent encoder, the next thing to do is the fusion of features. Cur-
rently, there are two ways to fuse features, one is pre-fusion, and the other is
post-fusion. Pre-fusion inputs image information and text information to a net-
work for further encoder, and finally uses the task-related network; post-fusion is
to directly concate the features from the image text encoder and then input to the
task-related network. Generally speaking, pre-converged networks are better than
post-converged.

Graphic matching is a matching problem of all sentences and all images. It may
be relatively tricky to solve this problem directly, so sometimes it is necessary to
split these data into components.

The other is that there are many tricks in the model training. Sometimes or
most of the time, it is not because our idea is not good enough, but because we have
insufficient experience in training the model, so we tell us that we must be patient
in training the model. The road is right, you can keep going, and it will have good
results.
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2.4 Conclusion of Literature
There are many research focusing on the field of object detection and image-text
alignment. We reviewed the research problem and studies their proposed solutions
and methodologies.

In object detection, the major problem is to extract featured object out from
images. Convolutional neural network (CNN) [24] was firstly proposed and became
the basis of most of the preceding improved models in the field. There are classic
deep learning models like VGG [33] and RCNN [9], followed by more recently im-
proved ones like Fast RCNN [8] and Faster RCNN [28]. These deep learning models
significantly helped solve the task of object detection and they can achieve promising
results.

For image-text alignment, the primary focus is how to map both image and text
to the same semantic space. There are CNN models which was able to apply the
convolution operation to text such as m-CNN. Recently, models like DAN focus on
applying attention mechanism on neural networks to align different image regions to
different text tokens, which greatly improved the quality of image-text alignment.
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Chapter 3

Coarse-grained Cross Modal
Retrieval

In Chapter 2, we discussed several models proposed to solve the image-text align-
ment task. However, they all have drawbacks in terms of different aspects. In this
chapter we explain the Stacked Cross Attention Model (SCAN) [15] and applied it
on performing coarse-grained cross-modal retrieval task. Followed by discussing how
it excel the image-text alignment task and why we choose to investigate it to solve
the problem later in the task of coarse-grained cross modal retrieval for artworks.

The structure of this chapter is as follows. Section 3.1 gives an introduction
and motivation of SCAN. Section 3.2 explains the structure and methodologies used
in SCAN, also how all its components iterates with each other. Section 3.3 briefly
discusses the strengths of the adopted model for coarse-grained cross-modal retrieval.
Section 3.4 illustrates the preliminary experimental results on our artwork datasets
and the achievement of SCAN. Section 3.5 summarises this chapter.

3.1 Introduction

There are several models proposed recently to solve the task of cross modal retrieval,
and many have achieved excellent accomplishments. Lee, et al. [15] uses the pro-
posed Stacked Cross Attention (SCAN) to find all potential alignments between the
image area and the words, thereby calculating the similarity between the graphics
and the text. Existing methods perform fixed-step attention inference so that only a
limited semantic alignment can be found at a time, and SCAN can find all possible
semantic alignments at the same time. Since the number of semantic alignments
varies among different images and sentences, the corresponding relationship inferred
by the Stacked Cross Attention method is more comprehensive, thereby making the
image-text alignment more interpretable.

Also, this method used some of the currently available optimisation methods,
such as the use of hard-negative, triplet ranking loss, etc. SCAN is proved to be
very effective in image-text alignment task, thus, in this chapter, we employ SCAN
on our coarse-grained cross modal retrieval task.
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3. Coarse-grained Cross Modal Retrieval

We explain the structure of SCAN model in the next sections.

3.2 Image Feature Extraction
Before we perform any cross modal retrieval and alignment between image and text,
we need to firstly extract features from images. There are many models we have
discussed before in Section 2, here we use one of the most widely used model called
faster R-CNN to both extract the top-k image regions from an image and represent
the image regions of interest as a continuous vector as in the work done by Anderson,
et al. [2]. It proposes a top-down and bottom-up attention model method, which is
applied to the related issues of visual scene understanding and prominent question
answering system.

The article mentions the use of faster R-CNN to employ a bottom-up attention
model - that we adopted. Different from the traditional faster R-CNN, [2] uses “not
only the object detector but also the attribute classifier for each region of interest, so
that a binary description of the object (attribute, object) can be obtained”. Bottom-up
attention model allows the overlap of interest frames through the preset threshold,
which can understand the image content more effectively.

3.2.1 Why Adopt Faster R-CNN?

Figure 3.1: Faster R-CNN with attention comparing to CNN [2]

It can be seen from the Figure 3.1 that using CNN demands more characteristics
than R-CNN, and many of them are usually worthless. The object detection method
of R-CNN first “captures the interest region for an image, then applies an object de-
tector to each interest region, so that the image category can be accurately obtained;
the CNN method expects the input of an entire image and is used for broad sample
classification, which are often complicated and computationally intensive” [2]. Be-
sides, faster R-CNN improves on previous generations of R-CNN methods and earns
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3.3. SCAN Model

the ability to recognise almost all objects with only one input, which significantly
improves the processing efficiency.

3.2.2 Bottom-Up Attention Model

From Figure 3.2 below, it can be seen that the difference from the prior works is
that the set of thresholds allows overlapping of interest frames, which can more
effectively understand the image content. In this model, according to [2], “not only
the object detector but also the attribute classifier is used for each region of interest,
so that a binary description of the object (attribute, object) can be obtained”. This
description is proved more suitable for real-world applications.

Figure 3.2: What bottom-up attention model captures? [2]

3.3 SCAN Model

In this section, we discuss SCAN model with a brief introduction on its structure,
followed by in-depth explanations on each specific stages - what is happening behind
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and why?

3.3.1 Brief Structure

1. Use bottom-up attention mechanism [2] to detect the image area and extract
the features of the image area;

2. Map the words in the sentence and their sentence context to feature vectors;

3. Stacked Cross Attention is used to deduce the similarity of images and text
by aligning image regions and word features;

4. The loss function of SCAN focuses on the hardest negative image-text pairs
in each batch (that is, the most unmatched image-text pairs).

Next, we are going to explain each stage in detail.

3.3.2 Image-Text Matching

The process is shown below in Figure 3.3.

Bottom-up
Attention

Sentence : 
Porcelain libation vessel in dark blue glaze with three legs, a
loop handle and two short columns rising from the rim and with
two five-clawed dragons

Porcelain libation vessel in dark blue glaze with three legs, a
loop handle and two short columns rising from the rim and with
two five-clawed dragons

Porcelain libation vessel in dark blue glaze with three legs, a
loop handle and two short columns rising from the rim and with
two five-clawed dragons

Porcelain libation vessel in dark blue glaze with three legs, a
loop handle and two short columns rising from the rim and with
two five-clawed dragons

···
···
···

Porcelain libation vessel in dark blue glaze with three legs, a
loop handle and two short columns rising from the rim and with
two five-clawed dragons

Porcelain libation vessel in dark blue glaze with three legs, a
loop handle and two short columns rising from the rim and with
two five-clawed dragons

Stage	1:	Attend	to	words

Attended sentence vector 

···
···
···

Stage	2:	Attend	to	the	important	
image	fragment	given	

Pooling

Similarity

Similarity:

Artwork image: 

Figure 3.3: Image-Text Stacked Cross Attention

First, use bottom-up attention [2] to extract multiple proposals into features
for the image, then map to the same dimensions as the sentence features, and use
bi-direction GRU to extract features for the sentence.

Stage 1: calculate the attention representation at
i of all words for each region i,

and add them together to obtain the sentence representation at
i, the formula is as

follows:
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at
i =

n∑
j=1

αijej

where

αij = exp (λ1s̄ij)∑n
j=1 exp (λ1s̄ij)

Stage 2: calculate the cosine similarity of the i-th region and the obtained at
i.

R
(
vi, at

i

)
= vT

i at
i

∥vi∥ ∥at
i∥

Finally, i areas are superimposed together to get the similarity between image
and text, using LogSumExp pooling (LSE), i.e.

SLSE(I, T ) = log
(

k∑
i=1

exp
(
λ2R

(
vi, at

i

)))(1/λ2)

Alternatively, we can summarise R
(
vi, at

i

)
with average pooling (AVG), i.e.

SAV G(I, T ) =
∑k

i=1 R
(
vi, at

i

)
k

3.3.3 Text-Image Matching

Sentence : 
Porcelain libation vessel in dark blue glaze with three legs, a loop handle
and two short columns rising from the rim and with two five-clawed dragons

···

···

Stage	2:	Attend	to	words	given	

Pooling

Similarity

Similarity:
Porcelain

libation

vessel

legs

dragons

···

···

···

···

···

···

Stage	1:	Attend	to	image	fragments 	(attended	image	vector)

Figure 3.4: Text-Image Stacked Cross Attention
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The overall steps correspond exactly to the above, except that each word is used
to calculate the similarity with the attention of a picture, which is not repeated
here. The process is illustrated in Figure 3.4.

3.3.4 Image and Text Feature Representation

Image

Bottom-up attention technique [2], which is a method of target detection, is obtained
based on faster-RCNN. Faster R-CNN first obtains the regions of interest from the
input image, then applies an object detector for each region of interest, so that these
image features can be captured accurately.

Here the flow for image feature representation is: faster-RCNN, Residual NN
(Resnet)101 ⇒ 2,048 dimensional features ⇒ fully-connected layer transform to h-
dimensional ⇒ get image feature set.

Text

A RNN (recurrent neural networks) is used. Here the flow for text feature represen-
tation is: word ⇒ one-hot vector showing an index of the word in vocab ⇒ embed
to 300-dimensional vector ⇒ bidirectional GRU map to h dimensions word feature.

3.3.5 Target Alignment

Target alignment is essentially the setting of the loss function. In this case, SCAN
employs a hinge-based triplet ranking loss with margin α [15].

l(I, T ) =
∑
T̂

[α − S(I, T ) + S(I, T̂ )]+ +
∑

Î

[α − S(I, T ) + S(Î , T )]+

• where [x]+ ≡ max(x, 0) and S represents the similarity score calculation func-
tion (i.e. SLSE)

• The first sum calculates all negative sentences retrieval result T̂ given an image
I input and the second sum takes over all negative images retrieval result Î
given a sentence T input.

• If an image I and a sentence T are closer to one another in the joint common
space than any negative pairs, the hinge loss is zero by the margin α,.

Here SCAN [15] only consider the hard negatives in a mini-batch of stochastic
gradient descent instead of summing over all the negative samples to make the
calculations more computational efficient.

• for a pair (I, T ), the formula is shown below. e.g. the hard negative of one
image is the image that has the highest similarity with the text besides this
original pair. (vice versa for text)
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• Now the hardest negatives are given by

Îh = argmaxm ̸=I S(m, T )

and
T̂h = argmaxd̸=T S(I, d)

• The final loss is:

lhard(I, T ) =
[
α − S(I, T ) + S

(
I, T̂h

)]
+

+
[
α − S(I, T ) + S

(
Îh, T

)]
+

3.4 Preliminary Results
Here we perform SCAN on two artwork datasets introduced in Chapter 1: one an-
cient Egyptian artworks and one Chinese artworks. For ancient Egyptian artworks
dataset, it has 14,353 images in the training set, 1,793 images in the testing/valida-
tion set. The other Chinese artworks dataset, there are 6,086 images in the training
set, 761 images in the testing and validation set each.

For experiment settings, we tested on a Ubuntu machine with Intel Xeon Pro-
cessor E5-1620 (10M Cache, 3.60 GHz) CPU and a GeForce GTX TITAN X GPU.
The specific parameters settings are listed below:

Settings for image representation

• We used faster R-CNN model and ResNet-101 model pre-trained by Anderson
et al. on Visual Genomes dataset, performs detection of interesting regions
as bottom-up attention to extract features from images.

• To perform retrieval on a coarse-grained level, we use whole images as input.
Instead of capturing multiple (k > 1) Region of Interests (ROIs) for each
image, here we set k = 1 which captures all full images after average pooling
and extracted 2,048-dimensional features vector.

• We used L2 normalisation (Euclidean distance) into 1,024 joint common spaces
(same for GRU), these will be used as image feature vectors.

Settings for text representation

• We obtained 300 dimensional word embedding as input to GRU then use
embedding matrix to map it into 1,024 joint embedding spaces.

3.4.1 Evaluation Metrics

Recall is one of the most commonly used metrics in the field of information retrieval.
Here in this research project, we evaluate the performance of image annotation
(image query) and image retrieval (sentence query) by the recall at K (R@K). The
same as many other works in the field, “R@K is defined as the fraction of queries
for which the correct item is retrieved in the closest K points to the query” [15].
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3.4.2 Results

The following Table 3.1 illustrates the results of running SCAN model on our ancient
Egyptian and Chinese art alignment datasets.

Image Annotation Image Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

Ancient Chinese Art Alignment Dataset
SCAN i-t AVG 15.3 38.5 49.9 14.1 37.6 50.2

Ancient Egyptian Art Alignment Dataset
SCAN i-t AVG 3.3 20.4 36.1 8.0 22.9 33.8

Table 3.1: Result of SCAN on Artwork Datasets

The results are beyond satisfactory as shown; however, as in this stage, we only
used the features obtained using bottom-up attention [2] to train and test, the result
may be misleading. As bottom-up attention model was trained on natural images,
which means the features we obtained for training and testing set may be irrelevant
to those contained in artworks. Noted using an entire artwork image and a sentence
caption to feed SCAN may also lose detailed information in artworks, which will be
further discussed in Chapter 4.

3.4.3 Examples

Below we display a few examples from our coarse-grained cross modal retrieval
model: one for each dataset under sentence retrieval and image retrieval.

Sentence Retrieval

Figure 3.5 illustrates two examples which obtained sentences from full image queries.
There are several characteristics were successfully obtained from the left Egyptian
anthropoid statue and the right Chinese vase including the shape and colour but not
in a more detailed level. That is, for example, our textual retrieval results captured
“human-headed”, “white glassy porcelain vase” and even a little bit detail: “colourful
patterns on the body”, however, more details need to be furnished such as “long thin
beard” and “flowering begonia, iris, and butterfly”. These cannot be accomplished
well under the current settings we used which is coarse-grained based on image and
sentence level.

Image Retrieval

Similar results appeared in image retrieval examples shown as Figure 3.6. The model
was able to pick out major shapes and overall structure but detailed information
cannot be well aligned between full images and sentences thus cause inaccurate
retrieval on a more fine-grained level.
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Top-5 Ranked Sentences:
human-headed ruler after mummification process, Egyptian
kingdom anthropoid statue from the New Kingdom, statue in a
shape of human, dark brown coloured, god imsety with human-
headed, development of a new kind of mummy in human figurines

Ground Truth Sentences:
lord of the city of hardai appeared from the New Kingdom, became
common in the Late Period, lord anthropoid wearing a head gear and
a long thin beard made with brown stone, step toward permanent
protection in the afterlife

Top-5 Ranked Sentences:
porcelain bottle with pear-shaped body with coloured decorations, fine
white glassy porcelain delicately painted in mixed enamels in 'Gu Yue'
style, white vase with colourful patterns on the body, white vase
decorated with green dragons flying above clouds, white porcelain
bottle with a green and red body

Ground Truth Sentences:
milky white bottle-shaped glass vase with depressed globular
body decorated in mixed enamels with rock, flowering begonia and iris,
and a butterfly in flight also poetical inscription on neck in black and two
seals in red enamels.

Figure 3.5: Sentence Retrieval Example for Given Image Queries (coarse-grained)

Query:
inscription on this large light brown pharmaceutical jar, it was made for the physician's tomb with
horizontal wavy pattern, but this is less likely, since Harkhebi's name lacks the epithet "justified," which
was usually appended to the name of the deceased 

Query:
Flower pot made of blue underglaze porcelain with rice grain ornament

 Noted: shown top-5 ranked images, ranking from left to right

Figure 3.6: Image Retrieval Example for Given Sentence Queries (coarse-grained)

There is a significant issue in under the current model: too many irrelevant
textual attributes in our training data - especially our Egyptian dataset. These ad-
juncts, preposition and conjunctions are often noises comparing to the noun phrases,
which generally contain essential information of artwork descriptions. For instance,
in the process of text-image stacked cross attention, we first attend words to image
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fragments and then attend to words given attended image vector. These produced
attended image vectors may lose some degree of accuracy when these noisy words
took part in the attention steps. Therefore, some subtle, detailed features may not
be correctly captured by SCAN while mixing with noises. To solve this drawback,
we make some changes to SCAN in the next Section.

3.5 Conclusion
Automated image-text mutual annotation would help to transform traditional li-
brary artwork collection to digital. In this chapter, we employed a well-known cross
modal retrieval model: Stacked Attention and evaluated our Egyptian and Chinese
artwork datasets on it. Considering the unique representation of artworks and the
rich information they usually contain, in the next chapter, we modify this current
model to perform the cross modal retrieval task at a fine-grained level.
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Chapter 4

Fine-grained Cross Modal
Retrieval

In Chapter 3, we explained in detail on the structure and principle behind our
coarse-grained cross modal retrieval model. As we discussed, there are aspects that
we can focus on to achieve cross modal retrieval on another level: fine-grained. In
this chapter, we present our model for the novel task of fine-grained cross modal
retrieval.

The structure of this chapter is as follows. Section 4.1 gives a brief introduction
on our plans for modifying the previous model into a fragment level. Section 4.2
explains the processed artwork datasets and why the pre-processing is necessary for
our model. Section 4.3 proposes our fine-grained cross modal retrieval model on a
fragment level instead of focusing on whole images or sentences. Section 4.4 shows
the results of our presented model running on our annotated artworks datasets.
Section 4.5 points out some existing shortcomings of our methodology and potential
fields to be focused on in the future. Section 4.6 concludes this section.

4.1 Fragment Retrieval
In this chapter, we are trying to solve the cross modal retrieval task at a fine-grained
level, which means we shall not limit our retrieval on the image or sentence level
but a fragment level. We applied some changes in the previous model in Chapter 3:

• Instead of attending between image fragments with each token in sentence
captions, here we extract noun phrases from sentence captions to perform mu-
tual attention with image fragments in order to find correspondence between
the two modalities on fragment level.

• During the testing process, we replace the original annotations of artworks but
adopt manually handcrafted annotations as ground truth, which shall give us
a more accurate experiment result.

Next, we present our datasets used in this chapter.
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4.2 Dataset Preparation

As we mentioned in Chapter 1, the same datasets used in this Chapter and Chapter
3 are from the image caption paper by Sheng et al. [31]. For each artwork, two
files were available: a high-resolution jpeg image file and an accompanying xml and
json file including the metadata.

Python scripts (see Appendix A) were written to parse the xml and json files.
Instead of using the raw captions, here the textual attributes we use are already
processed into phrases. The technique here used is from Handler et al. [10], it
extracts noun phrases from captions in raw xml and json files which potentially
helped us improve the accuracy as in most cases noun phrases contain more relevant
information of artworks.

As one single artwork can often have more than one annotation existed in its
corresponding xml file, it is essential to extract all related annotations out and
also combine them into one record for training and testing purpose, which saves
computational power and simplifies the model input. We generate a combined .txt
file for each artwork image which contains all related textual attribution then pass it
to the noun phrase extraction process in order to achieve the retrieval in a fragment
level; results are saved in json format. Details are covered in Appendix A.

Our training tasks are based on these noun phrases and extracted image frag-
ments. The following section demonstrates the architecture of our fine-grained cross
modal retrieval model.

4.3 Overall Architecture

The architecture of the fine-grained cross modal retrieval model is depicted in Figure
4.1. This model takes full artwork images and full sentence captions as input. The
full artwork image input is a (224, 224) sized high-resolution colour picture and the
full sentence caption comes from our dataset which contains several descriptions of
artworks.

The model has two pipelines processing image and text input from start, for
image input, we first detect salient regions as bottom-up attention [2] to extract
features from images using faster R-CNN [28] and ResNet-101 [12] (mentioned in
Section 2.2.3). These obtained image fragments and their representations will be
passed into a fully-connected layer, in order to transform them into a joint embedding
space with the same dimension of text (i.e. the dimension of GRU explanation in
next paragraph).

For full sentence captions as text input, as we mentioned in Section 4.2, we do
not process the whole sentence directly but first, extract noun phrases out to achieve
a finer-grained level. These noun phrases features will be passed into a bidirectional
GRU to map them into the same dimension joint embedding space as image features.

After we learnt image and text representation in a common space, we can use
SCAN to attend image to text and attend text to image, in order to get better
alignment in between. After computed mutual attention between image and text,

44



4.4. Experiments

representation	in
the	common	space

fully-connected	layerimage	fragments	and
their	representations

faster	R-CNN

full	artwork	image

head	of	a	cat	statuette,
a	pair	of	standing	ears,
four	dark	brown	thin	legs

a	cat	sitting

statuette	of	a	seated	cat
represents	Bastet	late	period,
feline	images,dynasty	xxii
finer	bronze	cats,loops	of	gold
scarab	on	the	head,	
wadjet-eye	on	the	chest
finer	bronze,bronze	cats

full	sentence	caption noun	phrases

representation	in
the	common	space

GRU	
(gated	recurrent	unit)

image	to
text

attention

text	to
image
attention

target	alignment

Ranked	recall

Calculate	similarity
using	learnt	common
space	representation

Cross	Modal	Retrieval

Figure 4.1: Fine-grained Cross Modal Retrieval Model Architecture

we start our follow-up part, which is cross modal retrieval. We use our learnt
common space representation to calculate similarity scores between image and text
- in this case, cosine similarity; meanwhile, calculate ranked precision and recall for
testing.

4.4 Experiments

For experiment settings, we used the same settings and environment as mentioned
in Chapter 3 : Ubuntu machine with Intel Xeon Processor E5-1620 (10M Cache,
3.60 GHz) CPU and a GeForce GTX TITAN X GPU.

Settings for image representation

• To save intense labour on retraining model for feature extraction task, we kept
the weights pre-trained by Anderson et al. on Visual Genomes dataset like
in Chapter 3 for faster R-CNN model and ResNet-101 model and performed
detection of interesting regions as bottom-up attention to extract features from
images.

• We captured k = 36 Region of Interests (ROIs) for each image after average
pooling and extracted 2,048-dimensional features vector.

• We used L2 normalisation (Euclidean distance) into 1,024 joint embedding
spaces (same for GRU), these will be used as image feature vectors.

Settings for text representation

• We obtained 300-dimensional word embedding as input to GRU then use em-
bedding matrix to map it into 1,024 joint embedding spaces.
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4.4.1 Ground Truth

For this specific testing task, as we mentioned before, we used our manually anno-
tated ground truth datasets. Each artwork has an updated xml file which contains
handcrafted image features and textural attributes. Here we show an example of
ground truth annotation in Figure 4.2.

<object>
<name>head	of	a	cat	statuette	carved	in	brown, 
with	a	pair	of	standing	ears</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>84</xmin>
<ymin>40</ymin>
<xmax>172</xmax>
<ymax>127</ymax>
</bndbox>
</object>
<object>
<name>Four	dark	brown	coloured	thin	shaped	legs	of 
a	cat	sitting	in	a	relaxed	posture</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>99</xmin>
<ymin>196</ymin>
<xmax>201</xmax>
<ymax>300</ymax>
</bndbox>
</object>

Figure 4.2: Sample Artwork with Ground Truth Features

From Figure 4.2 we are looking at an Egyptian artwork with a cat sculpture.
For all object that exist in the artwork, those are, “head of a cat statuette carved
in brown, with a pair of standing ears” and “four dark brown coloured thin shaped
legs of a cat sitting in a relaxed posture”, each of them has a corresponding detailed
location, pose, and truncated information attached.

4.4.2 Results

Table 4.1 present the quantitative results on Chinese and Egyptian artwork datasets
where all formulations of our proposed method outperform recent approaches in all
measures. Here we denote t-i as Text-Image formulation by text and i-t as Image-
Text formulation, AVG as average pooling and LSE as LogSumExp pooling. Like
most of the SCAN based models, we tested four different methods by different com-
binations of formulations and pooling methods. In addition, to check the necessity
of bidirectional GRU, we also include a test under one-directional GRU with i-t
AVG.

i-t usually surpasses t-i on both pooling methods, and it is evident that using
bidirectional GRU improves image annotation R@1 by 2.9 in Chinese artworks and
1.1 in Egyptian artworks, 1.6 and 1.2 for image search. The best result of the model
are 12.8 on image annotation (R@1) and 9.3 on image retrieval (R@5) relatively on
Chinese artwork dataset; 6.4 on image annotation (R@1) and 4.7 on image retrieval
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Image Annotation Image Retrieval
Chinese Artwork Alignment Dataset

Method R@1 R@5 R@10 R@1 R@5 R@10
t-i LSE 8.7 14.1 20.3 5.7 9.2 15.6
t-i AVG 7.9 14.4 20.6 6.2 9.6 16.2
i-t LSE 12.8 20.7 28.7 9.3 15.7 22.4
i-t AVG 12.6 20.3 28.9 9.1 15.9 23.2
One-directional GRU + i-t AVG 15.5 18.5 24.8 7.5 14.7 19.8

Egyptian Artwork Alignment Dataset
Method R@1 R@5 R@10 R@1 R@5 R@10
t-i LSE 4.7 9.2 17.5 1.9 8.6 14.9
t-i AVG 5.1 9.4 17.9 2.2 8.9 15.2
i-t LSE 5.8 11.5 20.9 4.7 11.8 18.6
i-t AVG 6.4 11.6 21.2 4.4 12.1 18.7
One-directional GRU + i-t AVG 5.3 10.8 20.1 3.5 10.1 16.8

Table 4.1: Result of Fragmented SCAN on Chinese/Egyptian Artwork Dataset

(R@1) relatively on Egyptian artwork dataset. In terms of R@10, our model was
able to obtain a 28.9 recall for image annotation task on Chinese dataset which is
gratifying and promising considering the strict and detailed ground truth testing set
we used.

We noticed that the recalls for sentence and image retrieval on both Chinese
and Egyptian artwork datasets are not satisfactorily high. To better understand
and evaluate our model, we demonstrate several successful and unsuccessful cross
modal retrieval examples in the next section for comparative analysis.

4.4.3 Cross Modal Retrieval Examples

Here we illustrate four typically successful and unsuccessful cross modal retrieval
samples of our model: one for each dataset under sentence retrieval and image
retrieval.

Successful Examples

Figure 4.3 shows two good text retrieval examples from given image fragment
queries. The bottom two Egyptian image fragments achieved excellent retrieval
results, the significant features such as colour and shape: “grey human face”, “light
brown cat head” were accurately captured. Although our Egyptian dataset has much
more noisy textual information, after obtained noun phrases as input, we noticed
that the result was much more detailed; detailed features like “big eyes”, “broken
nose” and “standing ears” were successfully identified.

Comparing to those personification figures in Egyptian artworks, our Chinese
artwork dataset has more abstract presentations, and some tiny details can be ex-
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Top-5 Ranked Phrases:
black and white drawings of mountains and trees, a set of
small houses beside trees, houses drawn in black outline, a
set of black inked inscriptions of trees and mountains, multi
coloured drawings of red houses and black trees

Ground Truth Phrases:
drawings of mountains, trees and houses painted on an album
leaf in monochromatic colours

Top-5 Ranked Phrases:
blue motif of flowers and leaves, central flower and rock motif,
blue, underglaze blue decorated bottom, motif with leaves in
blue underglaze, round blue and white motif

Ground Truth Phrases:
a central symmetrical flower motif with an intricate structure in
blue and white

Top-5 Ranked Phrases:
grey human face with big eyes and lips, Egyptian male face
with broken nose, male face with broken nose on a dark grey
stone, grey coloured human face
Ground Truth Phrases:
dark grey coloured face with a broken nose tip, two large
eyes, and a wrinkled forehead

Top-5 Ranked Phrases:
light brown cat head with standing ears, head of a cat with
eyes and ears, dark yellow coloured rough textured cat head,
cat head made with light brown stone

Ground Truth Phrases:
discoloured head of a cat coffin with pigmented brown finish

Figure 4.3: Successful Example of Text Phrase Retrieval for Given Image Fragment
Queries (fine-grained)

tremely subtle and hard to distinguish from the background. For instance, the top
fragment from a traditional Chinese drawing has plentiful features such as those red
houses surrounded by trees. Our model was able to pick up almost all of them in a
detailed descriptive manner: “small houses beside trees”, “black inked inscriptions”.
However, when it comes to sporadically appeared features such as the pattern in the
second Chinese artwork fragment, subtle details such as “symmetrical flower” may
be lost although the model still extracted major features like “central flower” and
colours.

Next, Figure 4.4 illustrates example image fragment retrieval results from given
noun phrase queries. The results from Chinese artwork dataset were impressive as
the model successfully distinguished very subtle features from image fragments such
as “six-character reign mark in double ring” and “among clouds”. The bottom two
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Figure 4.4: Successful Example of Image Fragment Retrieval for Given Text Phrase
Queries (fine-grained)

Egyptian noun phrases are fairly simpler than the Chinese ones, significant features
such as “long hair” and “long think handle” were accurately captured.

Unsuccessful Examples

Despite those brilliant fine-grained cross modal retrieval cases we have shown above,
here Figure 4.5 displays two unsuccessful examples noun phrase retrieval results from
image fragment queries. Our model was not able to identify the top Egyptian pig
amulet head. It has a tricky shape; its rare and unique light-blue colour also made
it more difficult for the model to retrieve the correct textual descriptions; our model
identified it as a hippopotamus amulet instead. The similar situation happened in
the bottom Chinese artwork fragment; European motifs rarely appear in Chinese
artworks which misled our model to recognise it as a more widely known figure
“qilin”. Our training dataset does not have enough data on this intricate pattern,
which raised the difficulty of retrieval task.

Finally, Figure 4.6 demonstrates another four unsuccessful example of image
fragment retrieval results from noun phrase queries. Similar to the noun phrase
retrieval case we reviewed above, the two samples here also have considerably spo-
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Top-5 Ranked Phrases:
head of a kingdom white dog amulet, typical head of
a hippopotamus amulet, late middle kingdom osiride head,
head of Egypt by the first millennium god symbol

Ground Truth Phrases:
light blue head of a pig with a long nose sniffing the base

Top-5 Ranked Phrases:
a 'qilin' in the centre with a chrysanthemum spray
around, dragon among clouds, intricate blue motif with
dragons, blue and white motif of several birds among clouds

Ground Truth Phrases:
blue rare European motifs

Figure 4.5: Unsuccessful Example of Text Phrase Retrieval for Given Image Frag-
ment Queries (fine-grained)

Figure 4.6: Unsuccessful of Image Fragment Retrieval for Given Text Phrase Queries
(fine-grained)
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radic features. The model usually can pick up the features such as shape and colour,
also repeatedly appeared local characteristics, however, for occasional and distinct
local features such as “a sword in hand”, “animal shaped bead” and “pencil sketched
mountain”, the model may get baffled, which lead to inaccurate and inadequate
results. For example, the third query requires the painting to be pencil sketched
which challenged our model besides the fact that it successfully captured “motif of
mountain” but lost on the “pencil sketched”. Rare features are proved to be more
challenging for our model to retrieve.

4.4.4 Discussion

Generally speaking, Chinese artworks surpassed Egyptian artworks on cross modal
retrieval tasks - more detailed descriptive noun phrases provided in Chinese artworks.
There are still a large amount of irrelevant noisy textual attributes in Egyptian
artwork dataset even after noun phrase extraction, which significantly impedes the
process of distinguishing features. Subsequently, adequate but not excellent recalls
are expected. There are three possible causes:

• Our training dataset cannot guarantee a balance of features. For example,
there are only 6,000 training images for Chinese artworks, and many of them
contain diverse shapes and details. Insufficient training features may influence
the ability of the model; therefore, cause inaccurate retrieval results.

• As we adopted new ground truth annotations acting testing purpose, consid-
ering these features are mostly handcrafted and being almost 100% accurate,
potentially increased the chance of wrong retrieval results which were retrieved
based on original raw training phrases obtained from the museum. If we were
able to also manually annotate artworks in the training dataset to retrain the
model, we suppose the retrieval result shall improve.

• One of the crucial requirements for image-text alignment is accurate and
proper feature extraction. However, in our case, we used the bottom-up at-
tention mechanism [2], which was designed and trained on real-world images
(VisualGenome). We all know that artworks usually have widely different rep-
resentations and requires unique and specific treatment on feature extraction.

Nevertheless, we did not have extra time to redesign our feature learning algo-
rithm to make it more adaptable to artwork representations. To improve our model
for better fine-grained cross modal retrieval results, in the next section, we dig into
some recent research on the aspect of image-text alignment.

4.5 Future Directions

In this section, we point out some cutting-edge researches on the field of image-
text alignment that are related to our methodology as future directions for further
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improvements. We are going to discuss in two main directions: the way to align
image and text and the way to extract image features (representations).

4.5.1 Similarity or Fusion?

Here we investigated recent research in the field of VQA, the problems of VQA and
image-text matching have a lot in common. For example, both accept image and
text features as input and then encode. If image-text alignment task is treated as a
binary classification problem, the only difference is that the output of VQA task is
of multiple classes.

Generally speaking, the processing of image-text matching problems can be di-
vided into “similarity” and “classification”. “Similarity” is to use the traditional
methods such as cosine similarity or dot product to calculate the similarity between
image and text in the same embedding space to judge whether it matches or not.
The representative methods are SCAN [15] and VSRN [16]. The “classification”
method is to use the neural network to fit a function that is better than the cosine
similarity, to determine whether the input image and text feature are a match or
not. This input comes from two modes and the output The neural network design
for a particular result is generally called “fusion”, which is more common in VQA,
and the representative method is MTFN [38].

Now let us discuss the pros and cons of traditional similarity calculation and
fusion by starting from analysing this problem from a theoretical perspective.

First, we look at a general bilinear fusion method proposed in MUTAN [3]:

score = σ ((ximg ⊙ xtxt) W) , x ∈ R1×d, W ∈ Rd×1

Figure 4.7: Bilinear Fusion in MUTAN [3]

Where x represents extracted feature and W is a learn-able matrix. It is merely
to reduce the dimensions after taking the product of the two features and then
output the matching probability through the sigmoid function. This is also the
primary method used in MTFN [38], which is referred to as bilinear fusion in the
following.

Here we use the simplest and most traditional similarity calculation method: dot
product here to compare with bilinear fusion:
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score = σ
(
ximgxT

txt

)
Observing the above two formulas, we can find that bilinear fusion is not much

different from the dot product. The dot product is to multiply the corresponding
position elements of the two vectors and sum all the elements, while the bilinear
fusion is first getting dot product of the corresponding position elements, then get
the product of W. This is equivalent to the weighted sum of the elements, that is,
when W is an all-one matrix, bilinear fusion degenerates into a dot product.

From this point of view, bilinear fusion can be understood as weighting different
positions when doing dot product when W is a weight matrix. Weighting helps, but
there are two problems:

• Optimisation. Can we guarantee a W better than the all-one matrix?

• Design issues. The dimension of the weight matrix is d × 1, that is, in the
inference, for the element product of any pair of graphic features, the weight
of each element position is identical, which is unreasonable.

In many experiments, it has not been shown that fusion must perform better
than dot product, and dot product is obviously more straightforward and faster than
fusion.

Early Fusion

There are many improvements to fusion this year, one of the most widely discussed is
early fusion. “Early” means that comparing to the bilinear fusion mentioned above,
it put the multi-modal features into the neural network earlier while there is only one
linear layer in bilinear fusion which locates at the end of the entire model. B2T2
[1] compared early fusion and late fusion on the Visual Commonsense Reasoning
(VCR) dataset [39], and concluded that early fusion usually works better. However,
it can be seen from Figure 4.8 shown below that this comparison can be somewhat
unfair, but at least early fusion added more detection information.

Figure 4.8: Late Fusion (left) & Early Fusion (right) in B2T2 [1]
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It should be noted that early fusion is mentioned in many papers, but the struc-
tural designs were slightly different, such as RAMEN [32].

Obviously, early fusion has contributed a lot to this aspect, and its performance
on VQA is also relatively comparable, but we have not seen enough reliable evidence
that early fusion completely exceeds late fusion represented by bilinear fusion. How-
ever, at least some aspects have shaken the dominance of bilinear, and these early
fusion methods are slightly coarse and have the potential to be better designed. We
can expect some future works to break this paradigm.

Back to image-text matching, if the idea of RAMEN [32] early fusion is intro-
duced into the research, considerable progress may be made.

4.5.2 Better Representation Learning?

It seems that the most critical factor affecting the alignment task is the charac-
teristics/feature learnt by the network, and the calculation of similarity is not as
crucial to a certain extent. VSRN [16] also proved this point by introducing many
components to learn features, and then used the most straightforward dot product
to achieve the current State-Of-The-Art performance.

Representation learning embodies its importance in earlier work. The bottom-
up and top-down [2] attention mechanism used by our previous model has indirectly
accomplished many image-text alignment pieces of research. Afterwards, VQA,
image-text matching, and image caption all started to use [2] to extract features,
which improved SCAN [15] by a significant amount and shows that a better repre-
sentation learning model is crucial.

2019 has been a year of the rapid development of representation learning. The
leader-board of VCR [39] has many popular large-scale pre-trained models such as
ViBERT [17], VideoBERT [34], UNITE [4] and MoCo [11]. Considering the special
category of image data we focus on - artworks, here we put more attention on those
specialised in artwork feature extraction. Recently, some works [36, 18, 37, 35, 29]
have proposed new methodologies for artwork feature extraction and contributed a
lot in the field.

Ma el al. [18] introduced a new methodology for artwork representation in 2017:
MTMR (multitask and multi-range). MTMR extracts from the fisher vector based
on scale-invariant feature transformation (SIFT) from the painting:

• Local, regional and global features

• Multiclass area coding structure

• Multitask learning framework

Figure 4.9 illustrates the overall architecture of the MTMR representation frame-
work. The above, middle and bottom represent different levels of feature extraction
using SIFT-based fisher vector: local, regional and global, respectively. Inside each
level, there are multiclass area coding and multitask learning structures. These ob-
tained features in different levels will be finally passed to the random forest model
as an ensemble mechanism to retrieve a final result.
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Figure 4.9: Overview of MTMR Representation Framework [18]

Figure 4.10 shows the detailed structure of how multitask learning works in the
MTMR framework. The right grey box contains several different tasks which are
split to process in parallel. There is a residual network inside the green box, which
consists of fully connected layers and convolutional layers for artwork image feature
extraction.

Figure 4.10: MTMR’s Multitask Learning Structure [18]

Besides the MTMR framework, in 2019, Shen et al. [29] tried to find almost
repetitive patterns from a large number of artworks.

Due to the differences in artistic media (oil paintings, pastel paintings, sketches,
etc.) and the inherent deviations in the reproduction process, this goal is more
difficult to mine than standard examples. The critical technology is to use self-
supervised learning to fine-tune standard depth features on specific art collections
to adapt them to this task. Correctly, use spatial consistency between adjacent fea-
ture matches as a supervised fine-tuning signal. The adjusted features enable more
accurate matching (not affected by differences in style) and can be used with stan-
dard pattern discovery methods based on geometric verification to identify repeating
patterns in the dataset.

Figure 4.11 demonstrates the feature learning process proposed. First candidate
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Figure 4.11: Feature Learning Strategy [29]

correspondences need to be obtained, which come from matching the proposal re-
gions in red boxes with the original complete dataset. Next, these correspondences
are checked by comparing features from validation regions (in blue). Finally, only
positive results from the previous step will be extracted and kept.

The method is evaluated on multiple different datasets and showed significant
qualitative findings. In terms of quantitative evaluation, the researchers marked
273 approximately repeating details in the dataset of 1,587 works of art by Lao
Jan Bruegel and his studio. In addition to works of art, the researchers also showed
improvements in the positioning of the algorithm on the Oxford5K photo dataset [27]
and historical photo positioning on the LTLL (Large Time Lags Location) dataset
[7].

We believe that a multitasking framework focusing on different levels of features
like MTMR [18] along with a fine-grained feature matching strategies mentioned in
Shen et al.’s research [29] will significantly help improve the fine-grained cross modal
retrieval model.

4.6 Conclusion
In this chapter, we first presented a fine-grained cross modal retrieval model based
on SCAN. It enables image-text retrieval on a fragment level which potentially eased
the artwork annotation task. Next, we conducted several experiments under different
settings to test the performance of our model on Egyptian and Chinese datasets by
comparing their recall rates. To better illustrate and explain the results, we displayed
several successful and unsuccessful retrieval examples from our experiments, which
shows our model has the ability to pick commonly shared features out accurately but
sometimes gets stuck on rare and unique features. Lack of enough artwork training
examples is also suspected as a cause of adequate recalls. We finally pointed out
future directions on the image-text alignment task by investigating recent research
works and proposed two significant aspects that could benefit our model.
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Chapter 5

Conclusion

In this thesis, we first comprehensively reviewed the mainstream proposed image-
text alignment frameworks for cross modal retrieval task and investigated SCAN
over artwork datasets. Then, we highlighted the deficiencies of the current methods
on artworks. Against the shortage of current methods, we proposed a fine-grained
cross modal retrieval model which can perform the task on a fragment level. This
model adopted the idea of bottom-up attention [2] to capture image regions, stacked
across attention [15] for image-text alignment and noun-phrase extraction for more
fragmented textual retrieval along with a manually handcrafted ground truth testing
set for better evaluations. Experiments demonstrated that this modal could obtain
some subtle features from artworks and does not lose significant features in the
meantime.

In this final chapter, we summarise our findings and results presented in the
thesis and discuss future directions for our research.

5.1 Achievements
The following list highlights the major achievements of this project:

• We employed SCAN to achieve coarse-grained cross modal retrieval on artwork
data, helped accelerate the artwork annotation task.

• We modified our coarse-grained cross modal retrieval model to fragment level;
this enables the cross modal retrieval task at a more fine-grained level focusing
on some subtle characteristics in artworks.

• Through our evaluation, we showed that our design is feasible and performed
the cross modal retrieval on a fragment level.

5.2 Limitations
This thesis has presented algorithms and approaches that contribute to solving prob-
lems in cross model retrieval for the artworks. Despite the contributions, there are
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some limitations to the proposed algorithms and approaches.
The first limitation is related to our image representation learning. By adopting

research from a real-world dataset training based such as bottom-up attention, it is
highly likely to miss peculiar patterns in artworks. It has been proved that feature
learning plays a crucial role in the field of image-text alignment; a novel method
targeting artwork feature learning may significantly help the task.

The second limitation is related to our dataset settings. We noticed some un-
balance in our dataset that some specific types of artwork do not frequently appear
as others, which may affect the training and testing result. As we know that a good
computer vision model often requires training on a massive amount of data such as
ImageNet [6], a better-structured dataset may help with this research.

5.3 Future Works
There are several future directions for the work this thesis presents. We summarise
the discussion of future works for each of the specific topics mentioned in Chapter
4 and propose future directions we wish to pursue.

5.3.1 Image-text Matching

There are already much research has been devoted to this area. Some used simple
similarity calculations with attention mechanism; some introduced fusion structure
such as bilinear fusion. However, this newly proposed method “early fusion” may
be an interesting algorithm to employ for the task of image-text matching.

5.3.2 Representation Learning

Considering the significant differences between the representations of real-world im-
age and artworks, it worths our efforts to develop a novel representation learning
mechanism targeting artworks. We believe this should significantly improve the
accuracy of cross modal retrieval on artworks.
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Appendix A

Implementation Details

This appendix provides some Python source code for the implementation mentioned
in Section 4.

A.1 Project Structure
In this section, we go through the structure of my implementation using structured
tables. This gives the audience and future researchers a brief idea on how the process
looks like.

Source Code File Description

egyptian_convert.py

Contains xml parser and json parser.
This generates caption for each picture,
extract features base on the corresponding
caption and also generate features for each
image by using parsed xml file

preprocess.ipynb
Combines the features extracted from
botton-up attention (Egyptian)

chinese_artworks_convert.ipynb
Combines the features extracted from
botton-up attention (Chinese)

Table A.1: Python Source Code Files for Preprocessing

Source Code File Description

data.py
Class PrecompDataset is where we changed
the path of extracted phrases and also where
to change process methods.

model.py Provides SCAN model based on VSE++.

train.py
Provides training process using settings in
model.py.

Table A.2: Python Source Code Files for Training
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Source Code File Description

evaluation.py
Provides testing process using the fragment
level annotations and ground truth.

demo.ipynb Provides a demo for testing process.

Table A.3: Python Source Code Files for Testing

A.1.1 Obtain Image Features

We used bottom-up attention [2] to extract features from our Egyptian and Chinese
artwork images. This methodolgy used a faster R-CNN and a ResNet101 as core
architecture. We obtained a pre-trained model from its Github open repository
which was trained on VisualGenome dataset consisting a large amount of real-world
images. A sample image feature extraction command for Egyptian training images
is displayed below:

1 $ python bottom -up - features / extract_features .py
2 --image_dir artworks /train --out_dir artworks / features
3 --cfg bottom -up - features /cfgs/ faster_rcnn_resnet101 .yml
4 --model bottom -up - features / models / bottomup_pretrained_10_100 .pth

We save these obtained image features under /features directory. These image
features of Egyptian and Chinese artworks are available in numpy array format,
which can be used for training directly in the future.

A.1.2 Obtain Textual Features

According to captions and corresponding image labels, we can extract the corre-
sponding image names from xml and json files which contains textual attributes.
This extraction process can be done using egyptian_convert.py, python script
then generates captions for each image, make sure that each has a corresponding
.txt file created. These produced .txt files are saved in /phrase directory.

To achieve the retrieval on a fragment level, we then extract noun phrases from
these .txt files. We use /preprocess.ipynb to obtain vocab.json. The API
adopted here was proposed by Handler et al. [10] and available on Github as well.

A.1.3 Training and Testing

For training process, we can simply modify the PrecompDataset class in data.py
to change related processing methods. A sample training command for Chinese
training images is displayed below (with i-t average pooling formulation):

1 python train.py --data_name chinese_artworks
2 --logger_name $RUN_PATH / chinese_artworks_scan /log
3 --model_name $RUN_PATH / chinese_artworks_scan /log
4 --max_violation --bi_gru --img_dim 2048
5 --agg_func =Mean --cross_attn =i2t --lambda_softmax =4
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For testing process, we load our saved model then run evaluation.py script. A
sample evaluation command is shown below:

1 from vocab import Vocabulary
2 import evaluation
3 evaluation . evalrank (" $RUN_PATH / chinese_artworks_scan / model_best .pth.

tar", data_path =" $DATA_PATH ", split="test")

A.2 Python Snippets

In this section, we briefly display the preprocessing part of our implementation which
is also crucial to the entire project as an efficient and accuracy extraction from xml
files can make the training and testing process easier and more smooth.

Here we focus on two specific files, one is egyptian_convert.py which is able
to parse xml and json files. Another one is preprocess.ipynb which combines
features and vocabularies for each distinct artwork.

A.2.1 Texual Attribute Parser

Here the code snippet of egyptian_convert.py is displayed below. Similarly,
chinese_artwork_convert.py works for Chinese artwork dataset.

1 import xml. etree. ElementTree as ET
2 import os
3 import numpy as np
4 from tqdm import tqdm
5 import json
6
7 # this module used to generate caption for each picture and extract

features base on the corresponding caption
8
9 # parse the xml and get the text for relevant element

10
11 def get_text (path):
12 tree = ET.parse(path)
13 root = tree. getroot ()
14 file_name = root [1]. text
15 res = []
16 for object in tree. findall (" object "):
17 res. append ( object [0]. text)
18 return file_name ,res
19
20 # generate features for each image by using parsed xml file
21
22 def xml_parser (path , features_path , save_path ):
23 list_dir = os. listdir (path)
24 features = []
25 not_list = []
26 for image in tqdm( list_dir ):
27 file_path = os.path.join( features_path , image.split(’.’)[0] +

’.npy ’)
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28 feature = np.load(file_path , allow_pickle =True). tolist ()["
features "]

29 print( feature )
30 feature = np.array( feature )
31 features . append ( feature [:10 , :])
32 features = np.stack( features )
33 np.save(save_path , features )
34
35 def json_parser (path):
36
37 # load the json files extract the sentence and corresponding

picture name.
38
39 with open(path ,"r") as file:
40 data = json.load(file)
41 for image in data[" images "]:
42 try:
43 file_name = image[" filename "]+".txt"
44 sentence = image[" sentences "]
45 sentence = sentence [0]["raw"]
46 except :
47 continue
48 # save the sentence in relevant files
49 with open(os.path.join("../ data/ phrase_train ", file_name ),

"w") as f:
50 f. write( sentence )

A.2.2 Feature Combination

Here the code snippet of preprocess.ipynb is displayed below.
1 import torchvision
2 import torch
3 import json
4 import cv2
5 import os.path as osp
6 from PIL import Image
7 from tqdm import tqdm_notebook
8 import numpy as np
9 import nltk

10 from collections import Counter
11
12 # combine the features extracted from botton -up attention
13
14 content = json.load(open(osp.join( dataset_name , ’caption_data .json ’)))
15
16 images = {
17 ’train ’: [],
18 ’test ’: [],
19 ’val ’: []
20 }
21
22 for image in content [’images ’]:
23 filepath = image[’filepath ’]
24 if len(image[’sentences ’]) == 0:
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25 continue
26 images [ filepath ]. append (image)
27
28 for phase in images .keys ():
29 features = []
30 for image in tqdm_notebook ( images [phase ]):
31 file_path = osp.join( dataset_name , ’features ’, image[’filename

’]. split (’.’)[0] + ’.npy ’)
32 print ( file_path )
33 feature = np.load( file_path )
34 features . append ( feature [:10 , :])
35 features = np.stack( features )
36 np.save(osp.join( dataset_name , phase), features )
37
38 from vocab import Vocabulary , serialize_vocab
39 from collections import Counter
40 import phrasemachine
41
42 threshold = 4
43 counter = {}
44 for phase in images .keys ():
45 captions = [x[’sentences ’][0][ ’raw ’] for x in images [phase ]]
46 for caption in captions :
47 temp = list( phrasemachine . get_phrases ( caption )[" counts "]. keys

())
48 for key in temp:
49 if key not in counter .keys ():
50 counter [key] = 1
51 else:
52 counter [key] += 1
53 # Discard if the occurrence of the word is less than min_word_cnt .
54 words = [word for word , cnt in counter .items () if cnt >= threshold ]
55
56 # create a vocab wrapper and add some special tokens
57 vocab = Vocabulary ()
58 vocab. add_word (’<pad >’)
59 vocab. add_word (’<start >’)
60 vocab. add_word (’<end >’)
61 vocab. add_word (’<unk >’)
62
63 # Add words to the vocabulary .
64 for i, word in enumerate (words):
65 vocab. add_word (word)
66 serialize_vocab (vocab , osp.join( dataset_name , ’vocab.json ’))
67
68 with open(osp.join( dataset_name , ’data.json ’), ’w’) as f:
69 json.dump(images , f)
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